This paper introduces techniques to recommend standardized tags using tag ontology. Tag recommendation consists of TWCIDF and TWCITC; the former technique automatically tags a large quantity of already existing document groups, and the latter recommends tagging for new documents. Tag groups are created through several processes, including preprocessing, standardization using tag ontology, automatic tagging and defining ranks for recommendation. In the preprocessing process, in order to search semantic compound nouns, words are combined to establish basic word groups. In the standardization process, typographical errors and similar words are processed. As a result of experiments conducted on the basis of techniques presented in this paper, it is proved that real-time automatic tagging and tag recommendation is possible while guaranteeing the accuracy of tag recommendation.
Journal of Korea Society of Industrial Information Systems
/
v.13
no.5
/
pp.133-141
/
2008
Social Web is turning current Web into social platform for knowing people and sharing information. This paper takes major social tagging systems as examples, namely delicious, flickr and youtube, to analyze the social phenomena in the Social Web in order to identify the way of mediating and linking social data. A simple Tag Ontology (TO) is proposed to integrate different social tagging data and mediate and link with other related social metadata. Through several machine learning for tagging data, tag groups and similar user groups are extracted, and then used to learn the tagging ontology. A recommender system adopting the tag ontology is also suggested as an applying field.
Journal of the Korea Society of Computer and Information
/
v.17
no.11
/
pp.133-140
/
2012
In this paper, we propose a music recommendation method considering users' tags by collaborative tagging in a social music site. Since collaborative tagging allows a user to add keywords chosen by himself to web resources, it provides users' preference about the web resources concretely. In particular, emotional tags which represent human's emotion contain users' musical preference more directly than factual tags which represent facts such as musical genre and artists. Therefore, to classify the tags into the emotional tags and the factual tags and to assign weighted values to the emotional tags, a tag ontology called UniTag is developed. After preprocessing the tags, the weighted tags are used to create user profiles, and the music recommendation algorithm is executed based on the profiles. To evaluate the proposed method, a conventional playcount-based recommendation, an unweighted tag-based recommendation, and an weighted tag-based recommendation are executed. Our experimental results show that the weighted tag-based recommendation outperforms other two approaches in terms of precision.
The purpose of the study is to develop an integrated knowledge structuring system for the domain of engineering, in which ontology-based literature mining, knowledge acquisition, knowledge integration, and knowledge retrieval are combined using XML-based tag information and ontology management. The system supports combining different types of databases (papers and patents, technologies and innovations) and retrieving different types of knowledge simultaneously. The main objective of the system is to facilitate knowledge acquisition and knowledge retrieval from documents through an ontology-based dynamic similarity calculation and a visualization of automatically structured knowledge. Through experimentations we conducted using 100,000 words economic documents reported in the "Go! Japan" project for analyzing Japanese industrial situation, and 100,000 words molecular biology Papers, we show the system is Practical enough for accelerating knowledge acquisition and knowledge discovery from the information sea.
Journal of the Korean Institute of Intelligent Systems
/
v.18
no.2
/
pp.157-162
/
2008
This paper presents a learning method of tagging ontology using large tagging data such as a folksonomy, which stands for classification structure informally created by the people. There is no common agreement about the semantics of a tagging, and most social web sites internally use different methods to represent tagging information, obstructing interoperability between sites and the automated processing by software agents. To solve this problem, we need a tagging ontology, defined by analyzing intrinsic attributes of a tagging. Through several machine learning for tagging data, tag groups and similar user groups are extracted, and then used to learn the tagging ontology. A recommender system adopting the tagging ontology is also suggested as an applying field.
In this research, a proposed Dynamic Virtual Ontology using Tags (DyVOT) supports dynamic search of resources depending on user's requirements using tags from social web driven resources. It is general that the tags are defined by annotations of a series of described words by social users who usually tags social information resources such as web-page, images, u-tube, videos, etc. Therefore, tags are characterized and mirrored by information resources. Therefore, it is possible for tags as meta-data to match into some resources. Consequently, we can extract semantic relationships between tags owing to the dependency of relationships between tags as representatives of resources. However, to do this, there is limitation because there are allophonic synonym and homonym among tags that are usually marked by a series of words. Thus, research related to folksonomies using tags have been applied to classification of words by semantic-based allophonic synonym. In addition, some research are focusing on clustering and/or classification of resources by semantic-based relationships among tags. In spite of, there also is limitation of these research because these are focusing on semantic-based hyper/hypo relationships or clustering among tags without consideration of conceptual associative relationships between classified or clustered groups. It makes difficulty to effective searching resources depending on user requirements. In this research, the proposed DyVOT uses tags and constructs ontologyfor effective search. We assumed that tags are extracted from user requirements, which are used to construct multi sub-ontology as combinations of tags that are composed of a part of the tags or all. In addition, the proposed DyVOT constructs ontology which is based on hierarchical and associative relationships among tags for effective search of a solution. The ontology is composed of static- and dynamic-ontology. The static-ontology defines semantic-based hierarchical hyper/hypo relationships among tags as in (http://semanticcloud.sandra-siegel.de/) with a tree structure. From the static-ontology, the DyVOT extracts multi sub-ontology using multi sub-tag which are constructed by parts of tags. Finally, sub-ontology are constructed by hierarchy paths which contain the sub-tag. To create dynamic-ontology by the proposed DyVOT, it is necessary to define associative relationships among multi sub-ontology that are extracted from hierarchical relationships of static-ontology. The associative relationship is defined by shared resources between tags which are linked by multi sub-ontology. The association is measured by the degree of shared resources that are allocated into the tags of sub-ontology. If the value of association is larger than threshold value, then associative relationship among tags is newly created. The associative relationships are used to merge and construct new hierarchy the multi sub-ontology. To construct dynamic-ontology, it is essential to defined new class which is linked by two more sub-ontology, which is generated by merged tags which are highly associative by proving using shared resources. Thereby, the class is applied to generate new hierarchy with extracted multi sub-ontology to create a dynamic-ontology. The new class is settle down on the ontology. So, the newly created class needs to be belong to the dynamic-ontology. So, the class used to new hyper/hypo hierarchy relationship between the class and tags which are linked to multi sub-ontology. At last, DyVOT is developed by newly defined associative relationships which are extracted from hierarchical relationships among tags. Resources are matched into the DyVOT which narrows down search boundary and shrinks the search paths. Finally, we can create the DyVOT using the newly defined associative relationships. While static data catalog (Dean and Ghemawat, 2004; 2008) statically searches resources depending on user requirements, the proposed DyVOT dynamically searches resources using multi sub-ontology by parallel processing. In this light, the DyVOT supports improvement of correctness and agility of search and decreasing of search effort by reduction of search path.
Recently XML (eXtensible Markup Language) is becoming the standard for exchanging the documents on the web. And as the amount of information is increasing because of the development of the technique in the Internet, semantic web is becoming to appear for more exact result of information retrieval than the existing one on the web. Ontology which is the basis of the semantic web provides the basic knowledge system to express a particular knowledge. So it can show the exact result of the information retrieval. Ontology defines the particular concepts and the relationships between the concepts about specific domain and it has the hierarchy similar to the taxonomy. In this paper, we propose the generation of semi-automatic ontology based on XML documents that are interesting to many researchers as the means of knowledge expression. To construct the ontology in a particular domain, we suggest the algorithm to determine the domain. So we determined that the domain of ontology is to extract the information of movie on the web. And we used the generalized association rules, one of data mining methods, to generate the ontology, using the tag and contents of XML documents. And XTM (XML Topic Maps), ISO Standard, is used to construct the ontology as an ontology language. The advantage of this method is that because we construct the ontology based on the terms frequently used documents related in the domain, it is useful to query and retrieve the related domain.
Journal of the Korean Society for Library and Information Science
/
v.44
no.4
/
pp.75-94
/
2010
This study designed a pilot system in which queries can be expanded through a tag ontology where equivalent, synonymous, or related tags are bound together, in order to improve the retrieval effectiveness of videos. We evaluated the proposed pilot system by comparing it to a tag-based system without tag control, in terms of recall and precision rates. Our study results showed that the mean recall rate in the structured folksonomy-based system was statistically higher than that in the tag-based system. On the other hand, the mean precision rate in the structured folksonomy-based system was not statistically higher than that in the tag-based system. The result of this study can be utilized as a guide on how to effectively use tags as social metadata of digital video libraries.
With the personal-media development that has emerged through various means such as UCC and SNS, many media studies have been completed for the purposes of analysis and recognition, thereby improving the object-recognition level. The focus of these studies is a classification of media that is based on a recognition of the corresponding objects, rather than the use of the title, tag, and scripter information. The media-classification task, however, is intensive in terms of the consumption of time and energy because human experts need to model the underlying media ontology. This paper therefore proposes an automated approach for the modeling of the media-classification ontology schema; here, the OWL-DL Axiom that is based on the frequency of the recognized media-based objects is considered, and the automation of the ontology modeling is described. The authors conducted media-classification experiments across 15 YouTube-video categories, and the media-classification accuracy was measured through the application of the automated ontology-modeling approach. The promising experiment results show that 1500 actions were successfully classified from 15 media events with an 86 % accuracy.
A number of process algebras have been proposed to develop distributed mobile real-time systems: pi-Calculus, Mobile Ambients Calculus, Bigraph, etc. However, as the systems get large and complex, the algebras become less suitable for understanding the interactions and mobility of the processes of the systems due to the size and complexity. Therefore it is necessary to handle the size and complexity for systematic understanding of the systems. This paper handles the size and complexity with a method of abstraction on sequences of interactions and movements of processes in the systems, which can be further organized in the form of hierarchically structured lattices, namely, Prism. The theoretical principle of the abstraction is based on a new concept of Behavior Ontology, which is extended from Active ontology. Prism allows the systems to be analyzed in the perspective of the lattices in Prism, which are characterized by the hierarchically organized behavioral properties of the developing systems, for systematic understanding the systems. In this way, the complexity of the interactions and the movements can be handled systematically in the semantically and hierarchically organized structure of the behavior.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.