• Title/Summary/Keyword: Tag number

Search Result 380, Processing Time 0.023 seconds

Bayesian Cognizance of RFID Tags (Bayes 풍의 RFID Tag 인식)

  • Park, Jin-Kyung;Ha, Jun;Choi, Cheon-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.5
    • /
    • pp.70-77
    • /
    • 2009
  • In an RFID network consisting of a single reader and many tags, a framed and slotted ALOHA, which provides a number of slots for the tags to respond, was introduced for arbitrating a collision among tags' responses. In a framed and slotted ALOHA, the number of slots in each frame should be optimized to attain the maximal efficiency in tag cognizance. While such an optimization necessitates the knowledge about the number of tags, the reader hardly knows it. In this paper, we propose a tag cognizance scheme based on framed and slotted ALOHA, which is characterized by directly taking a Bayes action on the number of slots without estimating the number of tags separately. Specifically, a Bayes action is yielded by solving a decision problem which incorporates the prior distribution the number of tags, the observation on the number of slots in which no tag responds and the loss function reflecting the cognizance rate. Also, a Bayes action in each frame is supported by an evolution of prior distribution for the number of tags. From the simulation results, we observe that the pair of evolving prior distribution and Bayes action forms a robust scheme which attains a certain level of cognizance rate in spite of a high discrepancy between the Due and initially believed numbers of tags. Also, the proposed scheme is confirmed to be able to achieve higher cognizance completion probability than a scheme using classical estimate of the number of tags separately.

Retrospective Maximum Likelihood Decision Rule for Tag Cognizance in RFID Networks (RFID 망에서 Tag 인식을 위한 회고풍의 최대 우도 결정 규칙)

  • Kim, Joon-Mo;Park, Jin-Kyung;Ha, Jun;Seo, Hee-Won;Choi, Cheon-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.2
    • /
    • pp.21-28
    • /
    • 2011
  • We consider an RFID network configured as a star in which tags stationarily move into and out of the vicinity of the reader. To cognize the neighboring tags in the RFID network, we propose a scheme based on dynamic framed and slotted ALOHA which determines the number of slots belonging to a frame in a dynamic fashion. The tag cognizance scheme distinctively employs a rule for estimating the expected number of neighboring tags, identified as R-retrospective maximum likelihood rule, where the observations attained in the R previous frames are used in maximizing the likelihood of expected number of tags. Simulation result shows that a slight increase in depth of retrospect is able to significantly improve the cognizance performance.

Improving performance with Initial number of tag estimation scheme for the RFID System (초기 태그 수 추정 기법을 이용한 RFID 시스템의 성능 향상)

  • Yang, Seong-Ryong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2643-2648
    • /
    • 2012
  • In the RFID Sytem, When leaders recognize the tag, a anti-collision scheme is an important factor in the performance of the system. Probabilistic-based anti-collision scheme using the slot status is a technique to estimate the number of tags. the schemes to quickly and accurately estimate the number of tags has been a lot of research. However, A initial number tag are not considering in the number of tags unknown environment. In the paper, estimation scheme for the initial number of tag is proposed to solve the problems. we analyze the performance by the initial number of tag and the proposed scheme.

A Tag Response Loss Detection Scheme for RFID Group Proof (RFID 그룹증명을 위한 응답손실 감지기법)

  • Ham, Hyoungmin
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.9
    • /
    • pp.637-645
    • /
    • 2019
  • The RFID group proof is an extension of the yoking proof proving that multiple tags are scanned by a reader simultaneously. Existing group proof schemes provide only delayed tag loss detection which detects loss of tag response in a verification phase. However, delayed tag loss detection is not suitable for real-time applications where tag loss must be detected immediately. In this study, I propose a tag response loss detection scheme which detects loss of tag response in the proof generation process quickly. In the proposed scheme, the tag responds with the sequence number assigned to the tag group, and the reader detects the loss of the tag response through the sequence number. Through an experiment for indistinguishability, I show that the sequence number is secure against an analyzing message attack to distinguish between specific tags and tag groups. In terms of efficiency, the proposed scheme requires fewer transmissions and database operations than existing techniques to determine which tags response is lost.

Optimal Time Structure for Tag Cognizance Scheme based on Framed and Slotted ALOHA in RFID Networks (RFID 망에서 프레임화 및 슬롯화된 ALOHA에 기반한 Tag 인식 방식을 위한 최적 시간 구조)

  • Choi, Cheon-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.9
    • /
    • pp.29-36
    • /
    • 2010
  • Consider an RFID network configured as a star such that a single reader is surrounded by a crowd of tags. In the RFID network, prior to attaining the information stored at a tag, the reader must cognize the tags while arbitrating a collision among tags' responses. For this purpose, we present a tag cognizance scheme based on framed and slotted ALOHA, which statically provides a number of slots in each frame for the tags to respond. For the evaluation of the cognizance performance, we choose the cognizance completion probability and the expected cognizance completion time as key performance measures. Then, we present a method to numerically calculate the performance measures. Especially, for small numbers of tags, we derive them in a closed form. Next, we formulate a problem to find an optimal time structure which either maximizes the cognizance completion probability under a constraint on the cognizance time or minimizes the expected cognizance completion time. By solving the problem, we finally obtain an optimal number of slots per frame for the tags to respond. From numerical results, we confirm that there exist a finite optimal number of slots for the tags to respond. Also, we observe that the optimal number of slots maximizing the cognizance completion probability tends to approach to the optimal number of slots minimizing the expected cognizance completion time as the constraint on the cognizance time becomes loose.

A Scheme for Estimating Number of Tags in FSA-based RFID Systems

  • Lim, In-Taek
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.2
    • /
    • pp.164-169
    • /
    • 2009
  • An RFID system consists of radio frequency tags attached to objects that need to be identified and one or more electromagnetic readers. Unlike the traditional bar code system, the great benefit of RFID technology is that it allows information to be read without requiring contact between the tag and the reader. For this contact-less feature, RFID technology in the near future will become an attractive alternative to bar code in many application fields. In almost all the 13.56MHz RFID systems, FSA (Framed Slot ALOHA) algorithm is used for identifying multiple tags in the reader's identification range. In FSA algorithm, the tag identification time and system efficiency depend mainly on the number of tags and frame size. In this paper, we propose a tag number estimation scheme and a dynamic frame size allocation scheme based on the estimated number of tags.

A Study On RFID Security Enhancement Protocol Of Passive Tag Using AES Algorithm (AES 알고리즘을 이용한 수동형 태그의 RFID 보안 강화 프로토콜에 관한 연구)

  • Kim, Chang-Bok;Kim, Nam-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.61-68
    • /
    • 2011
  • Recently arithmetic circuit of lightweight AES symmetric key algorithm that can apply to passive tag have been developed, then security protocol of RFID system using AES symmetric encryption techniques have been proposed. This paper proposed security enhancement protocol of RFID system using lightweight AES arithmetic circuit and random number generator of passive tag. The proposed protocol have AES algorithm and random number generator at server, reader, tag, and transmit encrypted message by separate secret key using random number at each session. The mutual authentication of tag and reader used reader random number and tag random number. As a result, proposal protocol reduce authentication steps of the existing mutual authentication protocol, and reduce amount of computation of tag, and demonstrate as secure protocol to every attack type of attacker by decrease communication step of Air Zone.

Passive RFID Based Mobile Robot Localization and Effective Floor Tag Arrangement (수동 RFID 기반 이동로봇 위치 추정 및 효율적 노면 태그 배치)

  • Kim, Sung-Bok;Lee, Sang-Hyup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1294-1301
    • /
    • 2008
  • Under passive RFID environment, this paper presents a new localization of a mobile robot traversing over the floor covered with tags, which is superior to existing methods in terms of estimation performance and cost effectiveness. Basically, it is assumed that a mobile robot is traveling along a series of straight line segments, each segment at a certain constant velocity, and that the number of tags sensed by a mobile robot at each sampling instant is at most one. First, for a given line segment with known starting point, the velocity and position of a mobile robot is estimated using the spatial and temporal information acquired from the traversed tag. Some discussions are made on the validity of the basic assumptions and the localization for the initial segment with unknown starting point. Second, for a given tag distribution density, the optimal tag arrangement is considered to reduce the position estimation error as well as to make easy the tag attachment on the floor. After reviewing typical tag arrangements, the pseudorandom tag arrangement is devised inspired from the Sudoku puzzle, a number placement puzzle. Third, through experiments using our passive RFID localization system, the validity and performance of the mobile robot localization proposed in this paper is demonstrated.

RFID Tag Number Estimation and Query Time Optimization Methods (RFID 태그 개수 추정 방법 및 질의 시간 최소화 방안)

  • Woo, Kyung-Moon;Kim, Chong-Kwon
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.6
    • /
    • pp.420-427
    • /
    • 2006
  • An RFID system is an important technology that could replace the traditional bar code system changing the paradigm of manufacturing, distribution, and service industry. An RFID reader can recognize several hundred tags in one second. Tag identification is done by tags' random transmission of their IDs in a frame which is assigned by the reader at each round. To minimize tag identification time, optimal frame size should be selected according to the number of tags. This paper presents new query optimization methods in RFID systems. Query optimization consists of tag number estimation problem and frame length determination problem. We propose a simple yet efficient tag estimation method and calculate optimal frame lengths that minimize overall query time. We conducted rigorous performance studies. Performance results show that the new tag number estimation technique is more accurate than previous methods. We also observe that a simple greedy method is as efficient as the optimal method in minimizing the query time.

OFSA: Optimum Frame-Slotted Aloha for RFID Tag Collision Arbitration

  • Lee, Dong-Hwan;Choi, Ji-Hoon;Lee, Won-Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.11
    • /
    • pp.1929-1945
    • /
    • 2011
  • RFID technologies have attracted a lot of attention in recent years because of their cost/time-effectiveness in large-scale logistics, supply chain management (SCM) and other various potential applications. One of the most important issues of the RFID-based systems is how quickly tags can be identified. Tag collision arbitration plays a more critical role in determining the system performance especially for passive tag-based ones where tag collisions are dealt with rather than prevented. We present a novel tag collision arbitration protocol called Optimum Frame-Slotted Aloha (OFSA). The protocol has been designed to achieve time-optimal efficiency in tag identification through an analytic study of tag identification delay and tag number estimation. Results from our analysis and extensive simulations demonstrate that OFSA outperforms other collision arbitration protocols. Also, unlike most prior anti-collision protocols, it does not require any modification to the current standards and architectures facilitating the rollout of RFID systems.