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Abstract

We consider an RFID network configured as a star in which tags stationarily move into and out of the vicinity of the
reader. To cognize the neighboring tags in the RFID network, we propose a scheme based on dynamic framed and slotted
ALOHA which determines the number of slots belonging to a frame in a dynamic fashion. The tag cognizance scheme
distinctively employs a rule for estimating the expected number of neighboring tags, identified as /Z?-retrospective
maximum likelihood rule, where the observations attained in the £/ previous frames are used in maximizing the likelihood
of expected number of tags. Simulation result shows that a slight increase in depth of retrospect is able to significantly

improve the cognizance performance.
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I. Introduction

Radio frequency identification (RFID) is a system
where a reader, in a contactless fashion, attains the
information stored at an electronic tag by using a

U2 In this paper, we consider an RFID

radio wave
network configured as a star such that a single
reader is located in the middle of the crowd of tags.
In an RFID network, a reader hardly knows about

the tags in its vicinity. Thus, the reader must
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cognize the neighboring tags prior to attaining the
information stored at a tag. To cognize a tag, the
reader usually broadcasts the inquiry about the
identities of tags and each tag makes response to the
inquiry. In an RFID network configured as a star,
two or more tags may attempt to respond at the
same time, which results in a collision among the
tags’ responses. For arbitrating a collision which

takes place in the tag cognizance process, tag

cognizance schemes based on framed and slotted

ALOHA were proposed and adopted
[1~2]

In some

standards® “. In a tag cognizance scheme based on

framed and slotted ALOHA, time is divided into
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frames and a number of slots are provided in each
frame. Then, each tag randomly selects a slot in the
frame and attempts to respond using the selected
slot. In the scheme, the number of slots provided in a
frame highly affects the tag cognizance performance.
Naturally, efforts were made to determine the number
of slots in an optimal fashion. Such an optimal design

were also performed in two directions; statically™ ™

611 A dynamic design typically

and dynamically
needs the information about the number of tags
around the reader. However, the reader hardly knows
it. Thus, various rules for estimating the number of
tags were proposed in the previous works 6181 Most
of them, however, use the observation attained only
in the present frame to determine the number of slots
provided in the next frame. Furthermore, tags are
assumed to move neither into nor out of the vicinity
of the reader while the tag cognizance proceeds.

In this paper, we consider an RFID network
configured as a star in which tags with low degree
of mobility move into or out of the vicinity of the
reader in a stationary fashion. In the RFID network,
we propose a tag cognizance scheme based on
dynamic framed and slotted ALOHA. The proposed
scheme is characterized by its employment of a rule
for estimating the expected number of neighboring
identified

likelihood rule, where the observations attained in the

tags, as  R-retrospective  maximum
R previous frames are used in maximizing the
likelihood of expected number of tags. Also, the
proposed scheme determines the number of slots
provided in the next frame so as to maximize the
short-term cognizance rate during the next frame.
The proposed scheme is then evaluated by measuring
the long-term cognizance rate.

In section II, we present a tag cognizance scheme
based on dynamic framed and slotted ALOHA. In
I,

maximum likelihood rule for estimating the expected

section we introduce an R-retrospective
number of tags in the vicinity of the reader. In
section IV, we determine the number of slots in a

frame as to maximize the short-term cognizance rate.
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Section V is devoted to the evaluation of the

proposed tag cognizance scheme.
II. Tag Cognizance Scheme: Overview

In this section, we propose a tag cognizance

scheme based on dynamic framed and slotted

ALOHA.
slot | slot | slot slot | slot| slot | slot
1 2 3 1 2 3 4

: y
frame
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Time structure in proposed tag cognizance
scheme.

Figure 1 shows an exemplary time structure
employed by the proposed tag cognizance scheme.
Time is divided into frames and a frame is again
divided into a part for the inquiry of the reader and a
part for the responses of tags. Also, each of the
inquiry and response parts consists of a number of
slots which have a fixed duration time. Using the
above time structure, the reader cognizes the tags in
its vicinity as follows:

(1) At the start of each frame, the reader inquires
the identities of tag and announces the number of
slots in the response part of the frame by using the
inquiry part.

(2) Each tag equally likely chooses a slot in the
response part of the frame and responds to the
reader’s inquiry using the selected slot.

(3) Looking at each slot in the response part of the
frame, the reader dichotomically decides whether no
tag responded in the slot or not.

(4) If the reader decides that at least one tag
responded in a slot, the reader tries to cognize a tag
in the slot.

(5) Using the observation on the number of slots
in which no tag responded, the reader estimates the
expected number of tags in its vicinity. (For details,
see section 3.)

(6) Using the estimate of the expected number of
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tags, the reader determines the number of slots in
the response part of the next frame as to maximize
the short-term cognizance rate during the next frame.

(For details, see section 4.)

III. Estimation of Expected Number of Tags

In the RFID network, a tag is assumed to have
mobility. As time goes by, some tags may leave the
region in which the reader is physically able to
cognize tags while new tags may enter the region.
Let M, denote the number of tags sojourning in the
vicinity of the reader at the start of the nth frame.
Then, we assume that {A,,n=1,2,---} is a strictly
stationary sequence such that A4, has the Poisson
distribution with unknown parameter A, ie., for all
n6{1,2,---,}

—Aym
P, =m) =2

n

(1

m!

for me{0,1,---}.

As shown in figure 1, a frame consists of inquiry
and response parts. Let A, and B, denote the
numbers of slots in the inquiry and response parts of
the nth frame, respectively, for nE{1,2,---}. Upon
the inquiry about the identities of the tags in the nth
frame, each of the M,

tags independently and

equally likely chooses a slot among the B, slots and
responds. Then, the reader measures the power level
at each slot and decides whether no tag responded or
not.

Let X, represent the number of slots where the
reader decides that no tag responded during the nth
frame. Then, the length of the response part B, is
completely determined by use of the observation on
X, -, X

n—1. Assume that the reader makes no
error in deciding whether no tag responded or not.

Then, the random variable X, is equal to the
number of slots in which no tag responds during the
nth frame. Thus, X, has the same distribution as

the number of boxes filled with no ball when A,
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indistinguishable balls are equally likely put into B,

[12]

boxes Therefore, when the number of tags

M, = m, the random variable X, has the following

conditional mass for given X, ==z, -,
Xn*lz‘rn*l‘
P(Xn :xn|X1 :l‘l""’anl :xnfﬂMl :m>
B, —x .
n n B B _ . In+] .
= 5 ()P e va- )
j=0 x J Bn,
for (zy,-,2,)E{0,, B} <---x{0,---,B,} and

m&<1{0,1,--- }. Since the number of tags A, has the

Poisson distribution with parameter A, X, has the

conditional mass for given X, =z, ‘-,
X, 1=z, as follows:
P(Xn = xanl = ml’”"anl :xnfl)
= >, P(M,=m)
m =10
. P(Xn :xn|X1 = 1‘17'"7an1 = In*l’Mn = m)
Bn x -
Bl &)
ITI,
for (21, +,2,)€{0,++, B }x-+-x{0,--,B,}, where
A
o= " @
Also, the joint mass for X, ---, X|, is calculated to
be
P(Xl :x17'”7Xn - mn)
" (B, T B,— z,
=11 20" ®
F=1\Tk

for n€{1,2,--- }.

At the start of a frame, the reader is assumed to
have the information that the number of neighboring
tags has a Poisson distribution with parameter .
However, the reader does not know the true value of
the parameter \. To determine the length of the next
frame in an optimal fashion, the reader thus has to
estimate the parameter \ precisely. For this purpose,

we propose a R-retrospective maximum likelihood
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rule for estimating the parameter A as follows. Let

fgf') denote the joint mass for X, p.q, ==+, X,
given X, ---, X,,_ p. Then,
fE),R) (.T,L,R+1,"‘71'7, | x17“.7xnfR)
:P(‘XVn*}Prl :xnfRJrl""’Xn =Ty
| Xl = I17“'7Xn7}i’ = In*R)
B P(X1:5517"'7Xn:35n)
B P(Xl :xl’“WXn*H:xn*R)
" B Ty B,— x,
= H (xk) kk(l_d)k) e (6)
k=n—R+1\"k

for (,,-,2,) E{0,+, B, }<---x {0, B, }.
Suppose that the reader observes X, =z, for

k{1, ---,n}. Define

dELR) . {07'“7B'r1,7}?+1}><”'>< {0’...7_3”}

—(0,00) (7)

to be a function such that the joint mass
PRz, gz, | 22, p), which is in fact
the likelihood of the parameter A [13], 1S maximized
by )\:dSLR)(xn*B‘Fl"”’xn)

ne{1,2,---}. Then, d' is identified as the R

setting for

—retrospective maximum likelihood rule for estimating
the parameter A. For R=1, the R-retrospective

maximum likelihood rule is easily calculated to be

B’!l
)

Ly

dw (z,) = B,log(

n

®)

if z,€{1,---,B,}. For RE{2,3,---}, however, the
likelihood rule
obtained in an explicit form. Taking the logarithm on

R-retrospective maximum is not

the likelihood in (6) and differentiating it, we have

the equation

n ¢k n

Tp 1

_(bk_kznfl?-%—lBk 1_¢k

)

k=n—R+1 1

A
where ¢, = e P for k={1,2,---}. Then, a solution

of the equation in (9) is the value of the R
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dﬁ(mn7}2+ 1"“’xn)'

IV. Determination of Length of Response
Part

Let Y, represent the number of tags that the

reader cognizes during the nth frame. Recall that the
inquiry and response parts in the nth frame consist
of 4, and B, the

slots, respectively. Then,

short-term cognizance rate during the nth frame is
defined to be

E(Y;I ‘ Xl :ID'"?XH,*I :‘T'n,fl)
A,+ B,

P 10)
for ne{1,2,---}. Using (10), we determine the
length of the response part in the next frame to
maximize the short-term cognizance rate during the
next frame.

Suppose that the reader cognizes a tag during a
slot if and only if only the tag responds during the
slot. Then, Y,

, 1s equal to the number of slots in
which only one tag responds. Recall that A7,

tags
sojourn in the vicinity of the reader at the start of
the nth frame and the response part of the nth

frame consists of B, slots. Then, Y, has the same

distribution as the number of boxes filled with only

one ball when A/, indistinguishable balls are equally
likely put into B, boxes 12, Thus, when the number
of neighboring tags A, =m, the random variable

Y, has the following conditional mass for given

Xl =Ty, ", anl —Tp-1-

P(Kl = Yn | Xl :xl"”7Xn—1 = ‘r'n,—l’Mn :m)

B (—1)"B,'m!

VT

min{B,,m} (_1)](3 _ )m*J
. n .] . 1)
= G=y(B, =) m—j)!

for  y,£{0,---,min{B,,m}}. The conditional

expectation of Y, may be directly calculated by use

(131D
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of the conditional mass in (11). Also, it can be
obtained by introducing some random variables. For
jE{1,-,B,}, let V; indicates that only one tag

responds in the jth slot of the response part in the n

th frame, ie, V;=1 if only one tag responds in the

jth slot and V; =0 otherwise. Then, we have

BYI
Y, =2V, (12)
j=1

Since only one tag among the all A4, tags must
respond in the jth slot for V; to be 1, we have

E(ijlXl:xlf"?Xn*l:xnfl’j‘[n:m)
:P(I/}Zl ‘ Xl :xlf”’)(n—l :xn—ﬁMz:m)
_|m Ll _L m—1

=(7)gra- 50 (13)
for all jE{1,---,B,}. Since the number of

neighboring tags has the Poisson distribution with

parameter A\, we thus obtain

E(Y;z ‘ Xl :xb'”?Xn—l :xn—l)

BH
:E(ZE(V] Xy = X, =2, M,)
j=1
P
B, (14)

e

for n={1,2,---}. From (10) and (14), we finally

have the short-term cognizance rate p, during the n

th frame as follows:

A
B,

A\ _

— " 15
pn An +Bn e ( )

for ne{1,2,---}.
At the end of the nth frame, the length of the
response part of the (n—+ 1)st frame is determined to

maximize the short-term cognizance rate p, . ;.

Unfortunately, the reader does not know the true

value of the  parameter \.  Substituting

df,,m (xy,-+,z,) for A, we thus have an approximate
short-term cognizance rate during the (n+1)st

frame
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~ dflR) (xla'“axn)

Pn+1 = A+Bn+l €

By (16)

where we set the length of the inquiry part 4, = A4
for all nE{1,2,---}. Let v be a positive critical
point of p,., which is a function of the variable
B, . . Then, we have

o dffz) (xla"'axn)
i 2

)

" -
ez

Note that ~ is also an extreme point. Thus, we

)2+ ng> (2, )A - (17)

determine the length of the response part of the

(n+1)st frame as follows:

B,

n+1

|

N—
IA
R

3

+

—
—

L’YJ 1f/;n+1( [71
’V’Y—I if/;rz+1( [’Y—I )>/;71,+1

V. Performance Evaluation

In this section, we evaluate the performance of

proposed tag cognizance scheme by using a
simulation method. For the performance evaluation,
we adopt the long-term cognizance rate §; by the
end of the jth slot as the performance measure,

which is defined as

B

="

(19)

for j&{1,2,---}, where

n

n* =maxine{1,2,--}: Y, (4, +B,) < j}.(ZO)
k=1
The simulation environment is as follows:
(1) At the start of each frame, the number of the
neighboring tags has the Poisson distribution with
mean A\ of 10.

(2) The inquiry part of a frame always consists of
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Fig. 2. Convergence of cognizance rate as time goes
by.

a single slot, ie, 4, =1 for all n€{1,2,---}.

(3) The length of the response part of the first
frame is fixed to 2, ie, B, =2.

Figure 2 shows the tendency of the long-term
cognizance rate as time goes by. In this figure, we
compare three rules; 1-retrospective maximum
likelihood rule, 32-retrospective maximum likelihood
rule and ideal rule (in which the reader exactly
knows the true value of the expected number of
We that  the

32-retrospective rule exhibits a significantly higher

neighboring  tags). observe
cognizance rate than the 1-retrospective rule. Also,
that the of the

32-retrospective rule closely approaches to the rate of

we notice cognizance rate

0.35 | i ]
o 030 Fif;%:‘;rtm—f}_;—'—:—'ﬁm_
o
025 |-

2 . e o -
= 0.20
B
g 100 stots
=
8 010 ~—300 slots
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Fig. 3. Long-term cognizance rate with

depth of retrospect.

respect to

Y = 2% nF AED 9
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40% | — . -
20% — — —
0% 1 8 1
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a7 4. AA0 oist &7 elAlEe Hg
Fig. 4. Ratio of long-term cognizance rate against
upper bound.
the ideal rule.

Figure 3 shows the long—term cognizance rate with
respect to the depth of retrospect. In this figure, we
observe that the long-term cognizance rate becomes
higher as the depth of retrospect gets greater at any
time.

When the parameter M\ is equal to 10, the optimal
length of the response part, which maximizes the
short-term cognizance rate, is 11. The repetition of
such a time structure (inquiry part of 1 slot and
response part of 11 slots) produces an upper bound of
the long-term cognizance rate, which is calculated to
be 0.335742. Figure 4 the
long—term cognizance rate with respect to the upper
bound of 0.335742. In this figure, we observe that a

great depth of retrospect is able to invoke an almost

shows normalized

ideal performance of long-term cognizance rate in a

relatively short time.

VL. Conclusions

In this paper, we considered an RFID network
configured as a star in which tags stationarily move
into and out of the vicinity of the reader. To cognize
the neighboring tags in the RFID network, we
presented a scheme based on dynamic framed and
slotted ALOHA

slots provided in a frame as to maximize the

which determines the number of
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short-term cognizance rate during the frame. Such an
the

number of neighboring tags. However, the reader

optimization requires information about the

hardly knows it. Thus, we proposed a rule for
estimating the expected number of neighboring tags,
identified as R-retrospective maximum likelihood
rule, where the observations attained in the R
previous frames are used in maximizing the likelihood

of expected number of tags. Simulations result

showed that a slight increase in depth of retrospect

is able to significantly improve the cognizance

performance. Also, observed was that a great depth

of retrospect can invoke almost ideal long-term

cognizance rate in a relatively short time.
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