• Title/Summary/Keyword: Tag Bits

Search Result 40, Processing Time 0.024 seconds

Adaptive Group Separation Anti-Collision Algorithm for Efficient RFID System (효율적인 RFID 시스템을 위한 Adaptive Group Separation 충돌방지 알고리듬)

  • Lee, Hyun-Soo;Lee, Suk-Hui;Kim, Sang-Ki;Bang, Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.5
    • /
    • pp.48-55
    • /
    • 2009
  • In this paper, We propose Adaptive Group Separation algorithm for efficient RFID system AGS algorithm determines the optimized initial prefix size j, and divides the group of. A reader requests the group and searches the tag ID. If a tag collision occurred, reader adds a one bit, '0' or '1' at first bit of collision point, As a result we observe that transmitted data bits and the recognition time are decreased. The proposed algorithms have been verified by computer simulation. The performance of the proposed anti-collision algorithm is evaluated in terms of the number of repetitions and the amount of transmission bits according to the in crease of the number of tags is 256. The AGS algorithm improve the number of repetitions by about 32.3% and reduce tile amount of the transmission bits by about 1/40 than slotted binary tree algorithm.

An Anti Collision Algorithm using Parity Mechanism in RFID Systems (RFID 시스템에서 패리티 메카니즘을 이용한 충돌방지 알고리즘)

  • Kim, Sung-Soo;Kim, Yong-Hwan;Ahn, Kwang-Seon
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.5
    • /
    • pp.389-396
    • /
    • 2009
  • In RFID systems, identifying the tag attached to the subject begins with the request from a reader. When the reader sends a request, multiple tags in the reader's interrogation zone simultaneously respond to it, resulting in collision. The reader needs the anti collision algorithm which can quickly identify all the tags in the interrogation zone. We propose the Anti Collision Algorithm using Parity Mechanism(ACPM). In ACPM, a collision can be prevented because the tags which match with the prefix of the reader's request respond as followings; the group of tags with an even number of 1's in the bits to the prefix + 2nd bits responds in slot '0', while the group of tags with an odd number of 1's responds in slot '1'. The ACPM generates the request prefix so that the only existing tags according to the response in the corresponding slot. If there are two collided bits in tags, then reader identify tags by the parity mechanism. That is, it decreases the tag identification time by reducing the overall number of requests.

Anti-Collision Algorithm for Fast Tag Identification in RFID Systems (RFID 시스템에서 고속 태그 식별을 위한 충돌방지 알고리즘)

  • Lim, In-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.287-292
    • /
    • 2007
  • In this paper, a QT_ecfi algorithm is proposed for identifying all the tags within the identification range. The proposed QT_ecfi algorithm revises the QT algorithm, which has a memoryless property. In the QT_ecfi algorithm, the tag will send the remaining bits of their identification codes when the query string matches the first bits of their identification codes. When the reader receives all the responses of the tags, it knows which bit is collided. If the collision occurs in the last bit, the reader can identify two tags simultaneously without further query. While the tags are sending their identification codes, if the reader detects a collision bit, it will send a signal to the tags to stop sending. According to the simulation results, the QT_ecfi algorithm outperforms the QT algorithm in terms of the number of queries and the number of response bits.

Design of a Low-Power and Low-Area EEPROM IP of 256 Bits for an UHF RFID Tag Chip (UHF RFID 태그 칩용 저전력, 저면적 256b EEPROM IP 설계)

  • Kang, Min-Cheol;Lee, Jae-Hyung;Kim, Tae-Hoon;Jang, Ji-Hye;Ha, Pan-Bong;Kim, Young-Hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.671-674
    • /
    • 2009
  • We design a low-power and low-area asynchronous EEPROM of 256 bits used in a passive UHF RFID tag chip. For a low-power solution, we use a supply voltage of 1.8V and design a Dickson charge pump using N-type Schottky diodes with a low-voltage characteristic. And we use an asynchronous interface and a separate I/O method for a low-area solution of the peripheral circuit of the designed EEPROM. And we design a Dickson charge pump using N-type Schottky diodes to reduce an area of DC-DC converter. The layout area of the designed EEPROM of 256 bits with an array of 16 rows and 16 columns using $0.18{\mu}m$ EEPROM process is $311.66{\times}490.59{\mu}m^2$.

  • PDF

Frequency-Scanning Type Microwave Tag System Using Defected Ground Structures (결함 접지 구조를 이용한 주파수 스캐닝 방식의 마이크로파 태그 시스템)

  • Lee, Seok-Jae;Han, Sang-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.247-252
    • /
    • 2013
  • In this paper, a microwave tag system of a frequency-scanning type is proposed with multi-resonators using defected ground structures. While a conventional chip-based RFID stores time-sequential codes, the proposed type achieves pure passive tags by using multi-resonant bits over a frequency range. Moreover, the resonators of the spiral defected ground structures implemented on the back side of transmission lines have advantages of the excellent bandstop characteristics as well as the bit-error avoidance by the re-radiation on normal resonators. The proposed microwave tag is designed with UWB antennas at 3~7 GHz. From the experimental results in an anechoic chamber, it has been verified of the excellent recognitions for various 5-bits identification codes.

A Variable-Slotted Tree Based Anti-Collision Algorithm Using Bit Change Sensing in RFID Systems (RFID 시스템에서 비트 변화 감지를 이용한 가변 슬롯 트리 기반 충돌 방지 알고리즘)

  • Kim, Won-Tae;Ahn, Kwang-Seon;Lee, Seong-Joon
    • The KIPS Transactions:PartA
    • /
    • v.16A no.4
    • /
    • pp.289-298
    • /
    • 2009
  • Generally, RFID systems are composed of one reader and several passive tags, and share the single wireless channel. For this reason, collisions occurwhen more than two tags simultaneously respond to the reader's inquiry. To achieve this problem, many papers, such as QT[8], HCT[10], BSCTTA[2], and QT-BCS[9], have been proposed. In this paper, we propose the tree-based anti-collision algorithm using a bit change sensing unit (TABCS) based on BSCTTA algorithm. The proposed algorithm can identify bits returned from tags through bit change sensing unit, even if multi collisions occur. So, it rapidly generates the unique prefix to indentify each tag, and reduce the total of bits. As the result, the cost of identifying all tag IDs is relatively reduced as compared with existing algorithms. It is verified through simulations that the proposed algorithm surpass other existing algorithms.

Anti-Collision Protocol with Stop Signal in RFID Systems (RFID 시스템에서 중지 신호를 이용한 충돌방지 프로토콜)

  • Lim In-Taek;Choi Jin-Oh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.4
    • /
    • pp.638-644
    • /
    • 2006
  • In this paper, a QT_ss protocol is proposed for identifying all the tags within the identification range. The proposed QT_ss protocol revises the QT protocol, which has a memoryless property. In the QT_ss protocol, the tag will send all the bits of their identification codes when the query string matches the first bits of their identification codes. While the tags are sending their identification codes, if the reader detects a collision bit, it will send a signal to the tags to stop sending. According to the simulation results, the QT_ss protocol outperforms the QT protocol in terms of the number of response bits.

A Query Tree Protocol with Stop Signal in RFID Systems (RFID 시스템에서 중지신호를 이용한 쿼리 트리 프로토콜)

  • Lim In-Taek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.526-529
    • /
    • 2006
  • In this paper, a QT_ss protocol is proposed for identifying all the tags within the identification range. The proposed QT_ss protocol revises the QT protocol. which has a memoryless property. In the QT_ss protocol, the tag will send all the bits of their identification codes when the query string matches the first bits of their identification codes. While the tags are sending their identification codes. if the reader detects a collision bit, it will send a signal to the tags to stop sending. According to the simulation results, the QT_ss protocol outperforms the QT protocol in terns of the number of response bits.

  • PDF

Effective Algorithm for the Low-Power Set-Associative Cache Memory (저전력 집합연관 캐시를 위한 효과적인 알고리즘)

  • Jung, Bo-Sung;Lee, Jung-Hoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • In this paper, we proposed a partial-way set associative cache memory with an effective memory access time and low energy consumption. In the proposed set-associative cache memory, it is allowed to access only a 2-ways among 4-way at a time. Choosing ways to be accessed is made dynamically via the least significant two bits of the tag. The chosen 2 ways are sequentially accessed by the way selection bits that indicate the most recently referred way. Therefore, each entry in the way has an additional bit, that is, the way selection bit. In addition, instead of the 4-way LRU or FIFO algorithm, we can utilize a simple 2-way replacement policy. Simulation results show that the energy*delay product can be reduced by about 78%, 14%, 39%, and 15% compared with a 4-way set associative cache, a sequential-way cache, a way-tracking cache, and a way cache respectively.

The Design of RFID System using Group Separation Algorithm (Group Separation 알고리듬을 적용한 RFID system의 구현)

  • Ko, Young-Eun;Lee, Suk-Hui;Oh, Kyoung-Wook;Bang, Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.11
    • /
    • pp.25-32
    • /
    • 2007
  • In this paper, we propose the Group Separation Algorithm for RFID Tag Anti-Collision. We study the RFID Tag anti-collision technique of ALOHA and the anti-collision algorithm of binary search. The existing technique is several problems; the transmitted data rate included of data, the recognition time and energy efficiency. For distinction of all tags, the Group Separation algorithm identify each Tag_ID bit#s sum of bit #1#. In other words, Group Separation algorithm had standard of selection by collision table, the algorithm can reduce unnecessary number of search even than the exisiting algorithm. The Group Separation algorithm had performance test that criterions were reader#s number of repetition and number of transmitted bits for understanding tag. We showed the good performance of Group Separation algorithm better than exisiting algorithm.