• Title/Summary/Keyword: Tag Antenna

Search Result 197, Processing Time 0.026 seconds

UHF & HF RFID Credit Card Size Tag Antenna Designs Using Silver-Ink and Jumper Structure (실버잉크와 점퍼구조를 사용한 신용카드 크기의 UHF & HF RFID 태그 안테나)

  • Nam, Sehyun;Chung, Youchung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.11
    • /
    • pp.972-977
    • /
    • 2016
  • This paper introduces development process and results of HF & UHF band(13.56 MHz, 920 MHz) tag antennas using a single-side printing method on a PE film. The size of tag antenna is designed in the area of $80mm{\times}50mm$, little bit smaller than a credit card. The UHF tag antenna, $76mm{\times}44mm$, is located at the outside of the card size tag antenna, and the HF tag antenna, $40 mm{\times}42 mm$, is located at the center of the UHF tag antenna. The UHF and HF tag antennas are designed with consideration of coupling effects. The single-side printing method with a jumper structure without using a via is used to make a loop antenna of HF tag antenna. The reading range of UHF tag antenna is about 6m, and the reading of HF tag antenna is about 5 cm. The designed tag antennas have long enough reading ranges for both bands. The tag is applicable to logistics and authentification.

Folded Loop Antennas for RFID Appilication (RFID 응용을 위한 폴디드-루프 안테나)

  • Choi, Tea-Il
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.2 no.4
    • /
    • pp.199-202
    • /
    • 2007
  • In this paper, we examined the operating principle of a passive tag antenna for RFID system in UHF band. Based on the study, we proposed a novel RFID tag antenna which adopts the inductively coupled feeding structure to match antenna impedance to a capacitively loaded commercial tag chip. The proposed tag antenna consists of microstrip lines on a thin PET substrate for low-cost fabrication. The detail structure of the tag antenna were optimized using a full electromagnetic wave simulator of IE3D in conjunction with a Pareto genetic algorithm, and the size of the tag antenna can be reduced up to kr=0.27(2 cm2). We built some sample antennas and measured the antenna characteristics such as a return loss, an efficiency, and radiation patterns. The readable range of the tag antenna with a commercial RFID system showed about 1 to 3 m.

  • PDF

Design of an Ultra-Compact UHF Passive RFID Tag Antenna for a Medical Sample Tube

  • Lee, Jung-Nam;Hwang, Moon-Young;Lee, Sang-Il;Lee, Kwang-Chun;Park, Jong-Kweon
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.974-977
    • /
    • 2012
  • In this letter, a small-sized ultra-high frequency (UHF) RFID tag antenna for a medical sample tube is proposed. The RFID tag antenna is designed and fabricated based on the circular loop antenna used in the UHF band (Korea standard, 917 MHz to 923.5 MHz). The tag antenna size is reduced using a circular meander stub. The antenna has a physical size of 8 mm, which is about ${\lambda}$/40 in electrical length. The proposed tag antenna is molded into a medical sample and multitag identification is performed.

The Effects of Substrate, Metal-line, and Surface Material on the Performance of RFID Tag Antenna

  • Cho, Chi-Hyun;Choo, Ho-Sung;Park, Ik-Mo
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.1
    • /
    • pp.47-52
    • /
    • 2007
  • We investigated the effects of substrate, metal-line, and surface material on the performance of radio frequency identification(RFID) tag antenna using a tag antenna with a meander line radiator and T-matching network. The results showed that readability of the tag antenna with a thin high-loss substrate could be increased so that it was similar to that of a low-loss substrate if the substrate was very thin. The readability of the tag antenna decreased significantly when the metal line was thinner than the skin depth. The readability of the tag also decreased drastically when the tag was attached to high-permittivity high-loss target objects.

A Circular UHF RFID Tag Antenna Design (UHF 대역의 원형 RFID 태그 안테나 설계)

  • Kim, Goo-Jo;Kim, Sinh-Hwan;Chung, You-Chung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.3 s.118
    • /
    • pp.282-287
    • /
    • 2007
  • A circular UHF RFID tag has been designed. This circular tag antenna can be optimized simply by controling two parameters, outer radius and inner radius of the tag antenna. The resistance and resistance values of the tag antenna have been researched based on the variation of inner and outer radii of the circular tag antenna. The simulation and measurement results are compared.

Design of a Tag Antenna for UHF RFID Food Systems

  • Shin, Dong-Beom;Lee, Jung Nam;Lee, Heyung-Sub;Lee, Sang-Yeoun;Kim, Byeong-Sam
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.4
    • /
    • pp.208-213
    • /
    • 2013
  • This paper proposes a tag antenna for radio frequency identification (RFID) food system. The RFID tag antenna is designed and fabricated based on the rectangular loop concept used in the UHF band (Korean and Japanese standards, 916.7-923.5MHz). The proposed tag antenna is composed of a radiation patch, sensor tag chip, temperature sensor, oscillator, and battery. We conjugated matching between the tag antenna and the sensor tag using a U-shaped stub. Details of the proposed tag antenna design and the simulated and measured results are presented and discussed.

Miniaturization Design of Tag Antenna for RFID System in 910 MHz band (910 MHz 대역 RFID용 태그 안테나의 소형화 설계)

  • Park, Gun-Do;Min, Kyeong-Sik
    • Journal of Navigation and Port Research
    • /
    • v.32 no.5
    • /
    • pp.363-368
    • /
    • 2008
  • This paper presents a miniaturization design technique of radio frequency identification (RFID) tag antenna operated in 910 MHz band. Miniaturization structure design for a tag antenna is performed by structure application of the folded dipole and meander line. In order to realize the maximum power transmission, imaginary part of a chip impedance and a tag antenna impedance is matched by complex conjugate number. The optimized tag antenna size is $50\;nm\;{\times}\;40\;nm\;{\times}\;1.6\;nm$ and its size is reduced about 62 % comparison with antenna size of reference [4]. The measured results of fabricated tag antenna are confirmed the reasonable agreement with prediction. The read range of the tag antenna with chip observed about 5 m.

RFID Tag Antenna for Metallic Objects

  • Lee, Sang-On;Chung, You-Chung;Kim, Sin-Hwan;Lee, Chang-Sic
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.267-270
    • /
    • 2005
  • An RFID patch antenna for metallic object has been designed. The effects of variation of distance between the tag antenna and ground of the antenna have been studied. Various dielectric constants, thickness, permittivity, width of transmission line and length of transmission line have been used to design the better tag antenna for metallic object.

  • PDF

RFID Tag Antenna Coupled by Shorted Microstrip Line for Metallic Surfaces

  • Choi, Won-Kyu;Kim, Jeong-Seok;Bae, Ji-Hoon;Choi, Gil-Young;Pyo, Cheol-Sig;Chae, Jong-Suk
    • ETRI Journal
    • /
    • v.30 no.4
    • /
    • pp.597-599
    • /
    • 2008
  • This letter presents the design of a small and low-profile RFID tag antenna in the UHF band that can be mounted on metallic objects. The designed tag antenna, which uses a ceramic material as a substrate, consists of a radiating patch and a microstrip line with two shorting pins for a proximity-coupled feeding structure. Using this structure, impedance matching can be simply obtained between the antenna and tag chip without a matching network. The fractional impedance bandwidth for $S_{11}$ <3 dB and radiation efficiency are about 1.4% and 56% at 911 MHz, respectively. The read range is approximately from 5 m to 6 m when the tag antenna is mounted on a metallic surface.

  • PDF

Optimization of UHF RFID Tag Antennas Using a Genetic Algorithm

  • Kim, Goo-Jo;Chung, You-Chung
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.263-266
    • /
    • 2005
  • An UHF ($860{\sim}960MHz$) RFID tag antenna is optimized and designed using a genetic algorithm (GA). The tag antenna impedance should be matched to the conjugate of the impedance of the tag IC Chip. The chip impedance has real and capacitive imaginary parts due to the parasitic capacitance of the RFID chip. A GA linked with a commercially available antenna simulation program optimizes the UHF $860{\sim}960\;MHz$ tag antenna to match a commercially available RFID chip. This method shows that any RFID antenna can be designed for any commercial RFID chip with any impedance.

  • PDF