• Title/Summary/Keyword: Taehwa river estuary

Search Result 11, Processing Time 0.031 seconds

Evaluation of Pollution Level for Organic Matter and Trace Metals in Sediments around Taehwa River Estuary, Ulsan (울산 태화강 하구역 퇴적물의 유기물 및 미량금속 오염도 평가)

  • Hwang, Dong-Woon;Lee, In-Seok;Choi, Minkyu;Kim, Chung-Sook;Kim, Hyung-Chul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.4
    • /
    • pp.542-554
    • /
    • 2015
  • Grain size, the content of ignition loss (IL), and the concentrations of chemical oxygen demand (COD), acid volatile sulfide (AVS), and trace metals (Fe, Mn, Cu, Pb, Zn, Cd, Cr, As, and Hg) in surface sediments from the Taehwa River estuary, Ulsan, were measured to evaluate pollution levels and potential ecological risks of organic matter and trace metals in estuarine sediment. The mean grain size (Mz) of sediments in the study region ranged from $-0.8-7.7{\varphi}$ (mean $2.8{\pm}2.4{\varphi}$). Surface sediments in the upstream region of the Taehwa River were mainly composed of coarse sediments compared to the downstream region. The concentrations of IL, COD, AVS and trace metals in the sediment were much higher at downstream sites of Myeongchon Bridge in the vicinity of industrial complexes than at upstream sites of those in the vicinity of the residential areas due to the anthropogenic input of organic matter and trace metals by industrial activities. On the basis of several geochemical assessment techniques [sediment quality guidelines (SQGs), enrichment factor (EF), geoaccumulation index ($I_{geo}$), pollution load index (PLI) and ecological risk index (ERI)], the surfaces sediments in the study region are not highly polluted for trace metals, except for As. However, the higher concentrations in downstream study regions of the Taehwa River could impact benthic organisms including shellfish (i.e. Manila clam) in sediments.

A Study on Effects of Hydraulic Structure on River Environment(II) : Water Quality and Ecological Characteristics (수공구조물이 하천환경에 미치는 영향에 관한 연구(II) : 수질 및 생태학적특성)

  • 안승섭;최윤영;이수식
    • Journal of Environmental Science International
    • /
    • v.11 no.4
    • /
    • pp.309-317
    • /
    • 2002
  • In this study, water protection reservoir is selected as the target which is located at the estuary of Taehwa river to analyze and examine the effects of hydraulic structure on river environment. This study examined the water quality variation characteristics among many effects of hydraulic structure on river environment before and after removal of the sediment protection reservoir when low flow is yielded. This study aims at the definition of factors which cause the change of ecological environment of river due to the effects of the sediment protection reservoir, and the proposal of the direction of environmental friendly river space development through the comparison of stream variation conditions(depth, velocity, and etc.) and riverbed variation characteristics with ecological depth condition of Taehwa-river's channel for each representative species of fish and examination those. Firstly, from the examination result of water quality when low flow is yielded before and after removal of the sediment protection reservoir for problems about water quality of river due to flow amount decrease in river, it is found that DO decreases about 0.78~0.86ppm at the lower stream of Myeongchon-gyo, and BOD decreases about 0.06~0.24ppm from right upper stream to the direction of estuary when the sediment protection reservoir is removed. It is known from the above that there is some improvement of water quality from the lower stream of Taehwa-gyo to the estuary in case of removal the sediment protection reservoir. Nextly, it is thought that the effects on ecosystem due to water depth and draw down in channel is not serious on the basis of the examination of water quality analysis result according to removal of sediment protection reservoir and hydraulic depths for reservation of ecosystem, these are 10~40cm for breeding season, 10~50cm for fry period, and 10~100cm for adult period of the representative species of fish in Korea.

Analysis of Hydraulic Characteristics by Sediment Protection Weir on Natural River Estuary (자연하도 하구부의 방사보에 의한 수리학적특성 해석)

  • Ahn, Seung-Seop;Choi, Yun-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.1
    • /
    • pp.51-60
    • /
    • 2001
  • This study examines the effects of removal of the sediment protection weir at Taehwa river mouth on hydraulic and around river environment considering the fact that the effects of the sediment protection weir which is installed to protect water level drop of Ulsan harbor caused by sediments according to flood in Taehwa river, Dong-chun, and so forth may add water quality contamination by flow stagnance in normal and drought period and accumulation of pollutants. The result is as follows. First, it is estimated from the examination of variation characteristics water depth and level for Taehwa river before and after removal of the sediment protection weir that about 0.01m of water depth down according to removal of the sediment protection weir occurs when low flow runs between the sediment protection weir which is located about 2.3km away from the estuary and Samho-gyo which is about 9.0km away from the sediment protection weir, and about 0.01~0.56m(directly upstream point of the sediment protection weir 0.56m, Myongchon-gyo 0.14m, Ulsan-gyo 0.03m, and Taehwa-gyo 0.02m) downs when design flood flows between the sediment protection weir and the upstream of Taehwa-gyo which is 10km away from the sediment protection weir. Therefore, it is thought that variation of hydraulic characteristics of water depth down and so on according to removal of the sediment protection weir is slight because water depth variation is only about 1cm between directly upstream point of the sediment protection weir and Samho-gyo. Next, it is estimated from the examination of variation characteristics of flow velocity for Taehwa river before and after removal of the sediment protection weir that about 0.0lm/s of flow velocity increase occurs between the directly upstream point of the sediment protection weir which is about 2.4km away from the estuary and the directly upstream point of Samho-gyo when low flow runs, and about 0.01~0.44m/s increases between the sediment protection weir and Samho-gyo when design flood flows. Therefore, riverbed erosion by the increased flow velocity is concerned but it is thought that the concern about riverbed erosion is not great because the mean velocity is about 0.07~1.36m/s when low flow runs, and about 1.02~2.41m/s when design flood flows for the sector which experiences the flow velocity variation.

  • PDF

Characteristics of Bed Profile Fluctuation According to Before & After Removal of the Sediment Protection Weir using HEC-6 model (HEC-6모형을 이용한 방사보 철거 전후에 따른 하상변동 특성)

  • Ahn, Seung-Seop;Lee, Soo-Sik;Choi, Yun-Young;Lee, Jeung-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.3 s.3
    • /
    • pp.93-102
    • /
    • 2001
  • In this study, the characteristics of river bed profile fluctuation are become possible to be used effectively in future estimation of Taehwa river general development plan through analysis and examination according to the effects of sediment protection weir located in the area of the estuary of Taehwa river's main channel using HEC-6 model. The flow conditions needed in analysis of the characteristics of river bed profile fluctuation refer the conditions of flow which secures 95 days in a year, flood flow, and design flood examined in the estimation of Taehwa river maintenance basic plan. First, in analysis result of river bed variation range, there is no significant variation in upstream section from Samho-gyo while there are the more active erosion and sedimentation as the more flow in downstream from Samho-gyo. Next, from the result of the capacity of sediment transfer, it is analyzed that sediment transfer capacity in the area of estuary of Taehwa river has no significant difference in before and after removal of the sediment protection weir when design flood flows while it is estimated that the more flow, the bigger sediment transfer capacity. Therefore, it is thought that the installation of a suitable hydraulic structure at the lowest point of Dong-chun tributary joins from the downstream of Taehwa river can be a good device to reduce the accumulation of sediments at the lowest point of Taehwa river considering the reduction plan of sediment inflow caused by removal of the sediment protection weir.

  • PDF

Numerical Modeling of Circulation and Salinity Distribution in Seomjin River Estuary

  • Made Narayana Adibhusana;Yonguk Ryu;Taehwa Jung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.526-526
    • /
    • 2023
  • Water circulation plays a crucial role in regulating the salinity of estuaries, which is essential for the survival of estuarine organisms. Changes in freshwater inflows or sea level can have significant impacts on the distribution and abundance of species within these ecosystems. To better understand these dynamics, this paper presents a study of water circulation and salinity distribution in Seomjin River estuary using the Finite Volume Coastal Ocean Model (FVCOM) numerical model. An extreme scenario was simulated to assess the potential impact of tidal currents and river flow discharge on circulation and salinity distribution. The results of this study have important implications for managing estuarine ecosystems and conserving their associated biodiversity.

  • PDF

The Community Structure of Macrobenthic Assemblages in the Taehwa River Estuary, Ulsan, Korea (울산 태화강 하구역에 서식하는 대형저서동물의 군집구조)

  • Kim, Hyung-Chul;Choi, Byoung-Mi;Jung, Rae-Hong;Lee, Won-Chan;Yun, Jae-Seong;Seo, In-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.694-707
    • /
    • 2016
  • This study investigated the community structure of macrobenthic assemblages in the Taehwa River Estuary, Ulsan, Korea. Macrobenthos were collected with a Van Veen Grab Sampler during February and November 2012. The total species number and mean density were $176species/9.6m^2$ and $1,992inds./m^2$, respectively. Polychaetes were the most dominant faunal group in terms of species (91 species) and abundance ($1,463inds./m^2$). The major dominant species were polychaetes Minuspio japonica ($609{\pm}1,221inds./m^2$), Hediste japonica ($174{\pm}318inds./m^2$), Tharyx sp.1 ($106{\pm}283inds/m^2$), Lumbrineris longifolia ($79{\pm}207inds./m^2$), bivalve Theora fragilis ($114{\pm}272inds./m^2$) and amphipod Grandidierella japonica ($88{\pm}223inds./m^2$). Based on community statistics (cluster analysis and non-metric multidimensional scaling (nMDS) ordination), the macrobenthic community was divided into three station groups. Group I(freshwater dominated stations 2-6 with coarse sediment) was characterized by a high abundance of polychaetes Minuspio japonica, Hediste japonica, Capitella capitata, Pseudopolydora kempi, amphipods Grandidierella japonica and Apocorophium acutum. Group II (ecotone, stations 7-9 with mixed sediment) was numerically dominated by bivalve Theora fragilis, polychaetes Cirriformia tentaculata, Tharyx sp.1, Lumbrineris longifolia and Chaetozone sp. Finally, Group III (seawater dominated stations 10-12 with fine sediment) was characterized by a high density of polychaete Magelona japonica. These results showed that changes in salinity gradient and sedimentary characteristics were the main factors behind spatial changes in the macrobenthic communities of the Taehwa River Estuary.

The Investigation of Faunal Habitat Based on Ecological Rostoration of Urban Streams in Ulsan (울산시 도심하천의 생태하천 복원사업에 따른 동물상 서식실태 조사 분석)

  • Cho, Hong Je;Kang, Ho Seon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.5
    • /
    • pp.1-17
    • /
    • 2013
  • We researched the fauna restoration of 5 urban streams in Ulsan established as ecological streams by improving water quality and river environment. The fauna inhabitation were compared according to the conditions of geometrical feature such as river width, low-water channel width, ect and water quality, water volumn, inland and forceland. The Mugeo cheon has clearly shown the fauna restoration effects resulting from supplying sustainable maintenance water and wastewater treatments. In the Yaksa cheon, on the other hand, the restoration effects were low due to the inflow of wastewater and sledges in some part of stream ever though the improvement of water quality. The Yeocheon cheon was found to have disadvantage on the ecological inhabitations due to supplying the maintenance water with highly concentrated salinity. The fauna restoration effect of the Meongjeong cheon was low due to the inflow of wastewater to the down stream. Therefore by supplying the maintenance water and improving the connection to the Taehwa river at the estuary, better restoration effects could be observed. In the Cheokgwa cheon, which is almost a natural river, the ecological integrity of the fauna population has been maintained quite well. It was concluded that the project to transform urban streams into ecological streams should focus on not only keeping water volume and quality but also maintaining favorable conditions for the migration and settlement of animal species close to the natural state.

A Study on Effects of Hydraulic Structure on River Environment(I) : Hydraulic Characteristics (수공구조물이 하천환경에 미치는 영향에 관한 연구(I) : 수리학적특성)

  • 안승섭;최윤영;이수식
    • Journal of Environmental Science International
    • /
    • v.11 no.3
    • /
    • pp.191-199
    • /
    • 2002
  • In this study, water protection reservoir is selected as the target which is located at the estuary of Taehwa river to analyze and examine the effects of hydraulic structure on river environment. This study aims at the definition of factors which cause the change of ecological environment of river due to the effects of the sediment protection reservoir, and the proposal of the direction of environmental friendly river space development through the analysis and examination of stream variation conditions and riverbed variation characteristics among many effects of hydraulic structure on river environment before and after removal of the sediment protection reservoir when design flow is yielded. Firstly, in case of removal the existing sediment protection reservoir, the hydraulic variation characteristics like depth drop due to removal of the sediment protection reservoir are thought of little because it is examined that depths drop with about 0.01m and 0.01~0.56m when low flow is yielded and design flood yielded, respectively. Nextly, as the examination result of the variation characteristics of flow velocity in case of removal the existing sediment protection reservoir, it is thought that the concern about riverbed erosion is not serious according to the analyzed result as the mean velocity of the channel section where the velocity varies in case of removal the sediment protection reservoir is about 0.07~1.36m/s when low flow is yielded, and is about 1.02~2.41m/s when design flood is yielded despite riverbed erosion is concerned as it is examined that flow velocity is getting increase as about 0.01m/s when low flow is yielded and about 0.01~0.44m/s when design flood is yielded. Lastly, from the prediction result of riverbed variation for each flow amount condition before and after removal the sediment protection reservoir, it is known that the variation range of riverbed is nearly constant when flow amount of the channel exceeds a specific limit as it is analyzed that the more flow amount, the more erosion and sediment in the channel section of down stream part of the sediment protection reservoir and the sediment protection reservoir~Samho-gyo, and the variation ranges according to flow amount between flood condition and design flood condition have little difference in the channel section of the upstream of Samho-gyo.

A Study on Prediction of Sediment and Riverbed Variation According to Sediment Transportation Functions (유사량 산정공식에 따른 유사 및 하상변동 예측에 관한 연구)

  • Go, Su Hyeon;Song, In Ryeol;Kim, Chang Seok
    • Journal of Environmental Science International
    • /
    • v.13 no.3
    • /
    • pp.263-277
    • /
    • 2004
  • The purpose of this study is to analyze the characteristics of riverbed variation due to the sediment protection weir located on the estuary of the main stream of Taehwa river using I-D finite difference model, HEC-6 model, and the followings are the results of estimating sediment transport rate, amount of scour or deposition, and accumulated amount of deposit according to before and after of the sediment protection weir removal with various flow rates in the channel. Ackers-White transport function produced the greatest sediment transport rate while Meyer-Peter showed the smallest sediment transport rate at the most down stream area of the watershed through the sediment transport rate analyses for various flow rates according to the existence or nonexistence of the sediment protection weir. Toffaleti's and Colby transport function were closest to the average value, and the difference among the results of the sediment transport functions showed up to 8~9 times. Duboy's transport function produced the greatest riverbed variation while Toffaleti's showed the smallest variation through the riverbed variation analyses according to the existence or nonexistence of the sediment protection weir. Yang's was closest to the average value, and the difference among the results of the riverbed variation analyses ranged from 1.4 times to 11 times. It is thought that a sediment transport function must be selected very carefully with respect to the criteria of sediment yield estimation because the analysis results of the sediment transport rate and riverbed variation according to flow rates showed significant differences among the sediment transport functions, and the differences of sediment transport rate and riverbed variation according to the various sediment transport functions decreased as the flow rate increased.