• Title/Summary/Keyword: Tactile display

Search Result 78, Processing Time 0.025 seconds

A Conceptual Design of an Integrated Tactile Display Device

  • Son, Seung-Woo;Kyung, Ki-Uk;Yang, Gi-Hun;Kwon, Dong-Soo;Kim, Mun-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2753-2758
    • /
    • 2003
  • Tactile sensation is essential for many manipulation and exploration tasks not only in a real environment but also in a virtual environment. In this paper, we discuss a conceptual design of an integrated tactile display system. The system comprises two parts: a 2 DOF force feedback device for kinesthetic display and a tactile feedback device for displaying the normal stimulation to skin and the skin slip/stretch. Psychophysical experiments measure the effects of fingerpad selection, the direction of finger movements and the texture width on tactile sensitivity. We also investigate characteristics of lateral finger movement while subjects perceive different textures. From the experimental results, the principal parameters for designing a tactile display are suggested. A tactile display device is implemented using eight piezoelectric bimorphs and a linear actuator, and is attached to a 2 DOF translational force feedback device to simultaneously simulate texture and stiffness of the object.

  • PDF

Tactile Response Characteristics of Haptic Displays based on Magneto-Rheological Fluids (MR 유체를 이용한 햅틱 디스플레이의 질감 반응 특성)

  • Jang, Min-Gyu;Choi, Jea-Young;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.26 no.3
    • /
    • pp.184-189
    • /
    • 2010
  • In this paper, tactile response characteristics in medical haptic interface are investigated to characterize the feeling of contact between the finger skin and the organic tissue when a finger is dragged over tissue. In order to represent the tactile feeling, a prototype tactile display incorporating Magneto-Rheological (MR) fluid has been developed. Tactile display devices simulate the finger's skin to feel the sensations of contact such as compliance, curvature and friction. Thus, the tactile display provides the surface information of organic tissue to the surgeon using different actuating mechanisms ranging from the conventional mechanical motor to the smart material actuators. In order to investigate the compliance feeling of human finger's touch, vertical force responses of the tactile display under the various magnetic fields have been assessed. Also, frictional resistive force responses of the tactile display are investigated to simulate the action of finger's dragging. From the results, different tactile feelings are observed as the applied magnetic field is varied and arrayed magnetic poles combinations. This research gives a smart technology of tactile displaying.

Study of Human Tactile Sensing Characteristics Using Tactile Display System (질감 제시 장치를 이용한 촉감인지 특성 연구)

  • Son Seung-Woo;Kyung Ki-Uk;Yang Gi-Hun;Kwon Dong-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.5
    • /
    • pp.451-456
    • /
    • 2005
  • This paper describes three kinds of experiments and analysis of their results related to human tactile sensitivity using an integrated tactile display system. The device can provide vibration, normal pressure and lateral slip/stretch which are important physical quantities to sense texture. We have tried to find out the efficient method of stimulating, limitation of surface discrimination by kinesthetic farce feedback and the effectiveness of the combination of kinesthetic force and tactile feedback. Seven kinds of different stimulating methods were carried out and they are single or combination of the kinesthetic force, normal static pressure, vibration, active/passive shear and moving wave. Both prototype specimen and stimulus using tactile display were provided to all examinees and they were allowed to answer the most similar sample. The experimental results show that static pressure is proper stimulus for the display of micro shape of the surface and vibrating stimulus is more effective for the display of fine surface. And the sensitivities of active touch and passive touch are compared. Since kinesthetic force feedback is appropriate to display shape and stiffness of an object, but roughness display has a limitation of resolution, the concurrent providing methods of kinesthetic and tactile feedback are applied to simulate physical properties during touching an object.

Development of an Integrated Mouse Type Tactile Display System (마우스형 통합 질감 제시 시스템 개발)

  • Kyung Ki-Uk;Son Seung-Woo;Yang Gi-Hun;Kim Munsang;Kwon Dong-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.5
    • /
    • pp.445-450
    • /
    • 2005
  • In this paper, we suggest an integrated tactile display system that provides kinesthetic force, pressure distribution, vibration and slip/stretch. The system consists of two parts: a 2 DOF force feedback device for kinesthetic display and a tactile feedback device for displaying the normal stimulation to the skin and the skin slip/stretch. Psychophysical experiments measure the effects of fingerpad selection, the direction of finger movements and the texture width on tactile sensitivity. We also investigate the characteristics of lateral finger movement while subjects perceive different textures. From the experimental results, the principal parameters for designing a tactile display are suggested. A tactile display device, using eight piezoelectric bimorphs and a linear actuator, Is implemented and attached to a 2 DOF translational force feedback device to simultaneously simulate the texture and stiffness of the object. As a result, we find out that the capability of the suggested device is sufficient to display physical quantities to display the texture.

A Study of Walking Guide for the Blind by Tactile Display (촉각제시에 의한 시각장애인 보행안내에 관한 연구)

  • Yoon, Myoung-Jong;Kang, Jeong-Ho;Yu, Kee-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.783-789
    • /
    • 2007
  • In this paper, firstly, we propose a generating method of the 3-D obstacle map using ultrasonic sensors. Secondly, we try to find the necessary stimulation conditions of compact tactile display device for effective transfer of obstacle information. The final goal of this research is the development of a walking guide system for the blind to walk safely. The walking guide system consists of a guide vehicle for the obstacle detection and a tactile display device for the transfer of the obstacle information. The guide vehicle, located in front of the walking blind, detects the obstacle using ultrasonic sensors. The processed information makes an obstacle map and transmits safe path and emergency situation to the blind by the tactile display. The tactile display device, located in the handle which is connected with the guide vehicle by cane, offers the processed obstacle information such as position, size, moving, shape of obstacle and safe path, etc. The concept of a walking guide system with tactile display is introduced, and experiments of 3-D obstacle detection and tactile perception are carried out and analyzed.

Development of Walking Guide Robot for the Blind (시각장애인을 위한 보행안내로봇 개발)

  • Yu K.H.;Yoon M.J.;Kwon T.K.;Kim N.G.;Kang J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.888-891
    • /
    • 2005
  • In this paper, the prototype of a walking guide robot with tactile display is introduced, and the psychophysical experiment of the tactile recognition for a tactile display is carried out and analyzed. The objective of this research is the development of a walking guide robot for the blind to walk safely. A walking guide robot consists of a guide vehicle and a tactile display device. A guide vehicle, located in the front of the walking blind, detects the obstacle using ultrasonic sensors and offers the information of position and walking direction acquired from GPS module to the walking blind by voice. The tactile display device, located in the handle which is connected with the guide vehicle by cane, offers the processed obstacle information such as position, size, moving, shape of obstacle and safe path, etc. The psychophysical experiments for the threshold of perception and recognition ability of tactile stimulation are carried out by the estimation of the subject group. As a result the appropriate tactile stimulus intensity and frequency to recognize tactile stimulation effectively are discussed and derived.

  • PDF

Wearable Tactile Display Based on Soft Actuator (유연한 구동기를 이용한 착용 가능한 촉각 제시 장치 개발)

  • Koo, Ig-Mo;Jung, Kwang-Mok;Park, Jong-Kil;Koo, Ja-Choon;Lee, Young-Kwan;Nam, Jae-Do;Choi, Hyouk-Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.1
    • /
    • pp.89-101
    • /
    • 2006
  • Tactile sensation is one of the most important sensory functions for human perception of objects. Recently, there have been many technical challenges in the field of tactile display as well as tactile sensing. In this paper, we propose an innovative tactile display device based on soft actuator technology with ElectroActive Polymer(EAP). This device offers advantageous features over existing devices with respect to intrinsic flexibility, softness, ease of fabrication and miniaturization, high power density, and cost effectiveness. In particular, it can be adapted to various geometric configurations because it possesses structural flexibility, so it can be worn on any part of the human body such as finger, palm, and arm etc. It can be extensively applied as a wearable tactile display, a Braille device for the visually disabled, and a human interface in the future. A new design of the flexible actuator is proposed and its basic operational principles are discussed. In addition, a wearable tactile display device with $4{\times}5$ actuator array(20 actuator cells) is developed and its effectiveness is confirmed.

  • PDF

Tactile feedback in tangible space

  • Yun, Seung-Kook;Kang, Sung-Chul;Yang, Gi-Hun;Kwon, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1802-1807
    • /
    • 2005
  • Tangible interface can be understood as a newly defined concept, which can provide an effective and seamless interaction between the human as a subjective existence and the cyberspace as an objective existence. Tactile sensation is essential for many exploration and manipulation tasks in the tangible space. In this paper, we suggest the design of an integrated tactile sensor-display system that provides both of sensing and feedback with kinesthetic force, pressure distribution, vibration and slip/stretch. A new tactile sensor with PDVF strips and display system with bimorph actuators has been developed and integrated by developed signal processing algorithm. In the scenario of haptic navigation in the tangible space, tactile feedback system is successfully experimented.

  • PDF

Development of Braille Display Using Dielectric Elastomer (고분자 유전체를 이용한 시각 장애인용 점자 출력기 개발)

  • 이상원;구익모;정광목;이성일;최후곤;전재욱;남재도;최혁렬
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.961-970
    • /
    • 2004
  • Tactile sensation is one of the most important sensory functions along with the auditory sensation for the visually impaired since it replaces the visual one of the persons with sight. In this paper, we present a tactile display device as a dynamic Braille display that is the unique tool f3r exchanging information among them. The tactile cell of the Braille display proposed is based on the dielectric elastomer, which is one of the electroactive polymers. It has advantageous features over the existing ones with respect to intrinsic softness, ease of fabrication, cost effectiveness and miniaturization. We introduce a new idea for actuation as well as additional considerations such as the driving circuit that makes it possible to drive multiple tactile cells in a high speed. Also, we describe the actuating mechanism of the Braille pin in details capable of realizing the enhanced spatial density of the tactile cells. Finally, results of psychophysical experiments are given to evaluate its effectiveness.

Tactile Transfer and Display Method using Data Glove and Vibration Motors Module (데이터 글로브와 진동모터를 이용한 촉각전달 및 제시 방법)

  • Kang, Hyung-Gu;Choi, Youngjin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1138-1144
    • /
    • 2013
  • This paper proposes a tactile transfer and display method between a data glove and vibration motors module. The data glove is developed to capture the hand postures and to measure the grip forces. The measured data are simplified with the proposed 5-bit transfer and display algorithm, and the vibration motors module is developed to display the measured hand posture and grip force to the operator. The proposed 5-bit algorithm contains both an 8-step hand posture and 4-step grip force level information for tactile transfer to the vibration motors module. Also, the effectiveness of the proposed method is shown through several experiments.