• Title/Summary/Keyword: TSS Removal

Search Result 115, Processing Time 0.024 seconds

Effect of Alkaline Pretreatment on Sludge Aerobic Digestion and Fertilizer Value (알칼리 전처리에 의한 슬러지 호기성 소화 및 액비 특성 변화)

  • Hwang, Eung-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.1
    • /
    • pp.90-96
    • /
    • 2008
  • In order to meet the stringent requirement of sludge disposal and to find ecological alternative, aerobic digestion coupled with alkaline pretreatment was studied. The treated sludge was tested for the potential of liquid fertilizer. In the aerobic digestion, it was obvious that the performance of digester B(fed with the sludge pretreated by NaOH) was better than that of digester A(fed with raw sludge) in terms of COD and SS removal. SS and VSS removal rates in digester B were 66% and 69%, respectively. At 5 days, TSS removal rate reached 47% in the digester B, which was 71% of final TSS removal rate. It revealed that the pretreatment process can shorten the retention time of aerobic digestion. 94.1% of TCOD in the raw sludge was reduced by alkaline pretreatment and aerobic digestion. Final SCOD was in the range of 220$\sim$230 mg/L implying the sludge was stabilized. Nitrification and pH drop were observed in the aerobic digestion. Final nitrate concentrations in digester A and B were 445.4 and 223.1 mg/L and final pH in digester B was 3.0. Biological assays reported that leaf size of cucumber seedling increased with nitrate concentration and sludge to soil ratio. The sludge treated by alkaline and aerobic digestion promoted the growth of seedling leaf and stem remarkably compared to raw sludge. In contrast, the aerobically digested sludge without pretreatment improved leaf growth and inhibited stem growth.

Assessment of Performances of Low Impact Development (LID) Facilities with Vegetation (식생이 조성된 LID 시설의 효율 평가)

  • Hong, Jung Sun;Kim, Lee-Hyung
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.2
    • /
    • pp.100-109
    • /
    • 2016
  • Low impact development (LID) facilities are established for the purpose of restoring the natural hydrologic cycle as well as the removal of pollutants from stormwater runoff. Improved efficiency of LID facilities can be obtained through the optimized interaction of their major components (i.e., plant, soil, filter media, microorganisms, etc.). Therefore, this study was performed to evaluate the performances of LID facilities in terms of runoff and pollutant reduction and also to provide an optimal maintenance method. The monitoring was conducted on four LID technologies (e.g., bioretention, small wetlands, rain garden and tree box filter). The optimal SA/CA (facility surface area / catchment area) ratio for runoff reduction greater than 40% is determined to be 1 - 5%. Since runoff reduction affects the pollutant removal efficiency in LID facilities, SA/CA ratio is derived as an important factor in designing LID facilities. The LID facilities that are found to be effective in reducing stormwater runoff are in the following order: rain garden > tree box filter > bioretention> small wetland. Meanwhile, in terms of removal of particulate matter (TSS), the effectiveness of the facilities are in the following order: rain garden > tree box filter > small wetland > bioretention; rain gardens > tree box filter > bioretention > small wetland were determined for the removal of organic matter (COD, TOC), nutrients (TN, TP) and heavy metals (Cu, Pb, Cd, Zn). These results can be used as an important material for the design of LID facilities in runoff volume and pollutant reduction.

Demonstration Study of Half-Saturated Bio-filter Wetland with Recirculation Pump for Road Stormwater (반포화 순환 여과식 인공습지에 의한 도로 강우유출수의 실증처리 연구)

  • Park, Kisoo;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.19 no.3
    • /
    • pp.259-270
    • /
    • 2017
  • In this study, field-scale half-saturated bio-filter wetland equipped with recirculation system was operated with stormwater from the paved road, and its operational performance and functions of LID-BMP were analyzed and compared with other facilities. The reduction of TSS, COD, TN, and TP were 92%, 63%, 36%, and 75%, respectively. Comparison of the reduction efficiency were carried out with respect to ratio between surface and catchment areas(SA/CA). In addition, this LID-BMP facility can reduce about 70% of pollutant by treating only 18% of total rainfall runoff. The results show that LID used for this study gave similar efficiency although its ratio was smaller. In addition, comparison study was made between synthetic fiber as a filter media and organic media, which shows that there was not any significant difference between, TSS and TP reduction, but there were large difference in COD and TN removal due to the presence and absence of release of organic carbon. Meanwhile, wetland system in this study equipped with a first-flush capture gave a higher stability in terms of treatment performance.

Biosorption Characteristics of Organic Matter in a Sequencing Batch Reactor : Effect of Sludge Retention Time (연속 회분식 반응기내 유기물 생물흡착특성: SRT 영향)

  • Kim, Keum-Yong;Kim, Jin-Hyung;Kim, Dae-Keun;Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.2
    • /
    • pp.175-180
    • /
    • 2008
  • The objective of this study was to investigate biosorption of organic matter on EPS(Extracellular Polymeric Substances) at different SRT(Sludge Retention Time) in a SBR(Sequencing Batch Reactor) process, which was operated with the following operation steps : Fill-React-Settle-Decant-Idle. The hydraulic retention time was set to be 24 hours. The results obtained from this study showed that the organic removal efficiency per unit microbial biomass decreased with increasing SRT, and the corresponding EPS amount also did. The percent removal of organic by biosorption increased with SRT, and it reached to 53.2% at SRT of 30 days. However, the highest biosorption per microbial biomass(48.6 mgCOD/gVSS) was found at SRT of 2 days. The EPS analysis was performed by measuring TSS, TCOD$_{Cr}$, and TKN. The EPS production per unit microbial biomass was observed to be high at a low SRT. Due to the above result, the floc formation was hindered and therefore poor settlement of sludge resulted in decreasing the COD removal efficiency. It was therefore concluded that the consideration of the system design should include the characteristic of EPS as well as other factors such as SRT, MLSS, and organic loading.

Hydrologic and Environmental Assessment of an Infiltration Planter for Roof Runoff Use (지붕 빗물이용을 위하여 개발된 침투화분의 환경·수문학적 평가)

  • Moon, So-Yeon;Choi, Ji-Yeon;Hong, Jung-Sun;Yu, Gi-Gyung;Jeon, Je-Chan;Flores, Precious Eureka D.;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.17 no.4
    • /
    • pp.325-331
    • /
    • 2015
  • Due to urbanization and increase in impervious area, changes in natural water circulation system have become a cause of groundwater recharge reduction, streamflow depletion and other hydrological problems. Therefore, this study developed the infiltration planter techniques applied in an LID facility treating roof stormwater runoff such as, performance of small decentralized retention and infiltration through the reproduction of natural water circulation system and use of landscape for cleaning water. Assessment of an infiltration planter was performed through rainfall monitoring to analyze the water balance and pollutant removal efficiency. Hydrologic assessment of an infiltration planter, showed a delay in time of effluent for roof runoff for about 3 hours and on average, 79% of facilities had a runoff reduction through retention and infiltration. Based on the analysis, pollutant removal efficiency generated in the catchment area showed an average of 97% for the particulate matter, 94% for the organic matter and 86-96% and 92-93% for the nutrients and heavy metals were treated, respectively. Comparative results with other LID facilities were made. For this study, facilities compared the SA/CA to high pollutant removal efficiency for the determination to of the effectiveness of the facility when applied in an urban area.

Maintenance of Infiltration-type Facilities for Non-point Source Pollutant (침투형 비점오염원 처리시설의 유지관리에 관한 연구)

  • Lee, Hosik;Lee, Sanghwan
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.2
    • /
    • pp.145-152
    • /
    • 2013
  • This study was conducted to improve the Nonpoint-source pollutant treatment plant efficiency and maintenance. Field and laboratory permeability test were conducted three times each before and after displacement. The removal efficiency such as TSS, BOD, CODmn, T-N, and T-P were investigated from the year of 2006 to 2011. The coefficient of permeability right after displacement was calculated to be $1.07{\times}10^{-3}(cm/s)$, coefficient of permeability after a year was calculated to be $0.88{\times}10^{-3}(cm/s)$, and after five years, it was calculated to be $0.3{\times}10^{-3}(cm/s)$ and accordingly, the amount of infiltration decreased. In case of the removal efficiency, it generally tended to decrease, but it showed the higher rates than the expected rates BOD 40%, SS 76%, T-N 39% and T-P 53%. It is concluded that displacement cycle should be at least five years and that dredging cycle should be at least three months and at most one year.

Optimization of POME treatment process using microalgae and ultrafiltration

  • Ibrahim, R.I.;Mohammad, A.W.;Wong, Z.H.
    • Membrane and Water Treatment
    • /
    • v.6 no.4
    • /
    • pp.293-308
    • /
    • 2015
  • Palm oil mill effluent (POME) was produced in huge amounts in Malaysia, and if it discharged into the environment, it causes a serious problem regarding its high content of nutrients and high levels of COD and BOD concentrations. This study was devoted on POME treatment and purification using an integrated process consisting of microalgae treatment followed by membrane filtration. The main objective was to find the optimum conditions as retention time and pH in the biological treatment of POME. Since after the optimum conditions there is a diverse effect of time and the process become costly. According to our knowledge, there is no existing study optimized the retention time and percentage removal of nutrients for microalgae treatment of POME wastewater. In order to achieve with optimization, a second order polynomial model regression coefficients and goodness of fit results in removal percentages of ammonia nitrogen ($NH_3-N$), orthophosphorous ($PO_4{^{-3}}$), COD, TSS, and turbidity were estimated. WinQSB technique was used to optimize the objective function of the developed model, and the optimum conditions were found. Also, ultrafiltration membrane is useful for purification of POME samples as verified by experiments.

Analysis of Hydrodynamic Separators for Combined Sewer Overflows and Stromwater Runoff Control (합류식 하수관거 월류수 및 우수관거 유출수의 수리동력학적 오염부하저감장치의 분석)

  • Lee, Soo Young;Oh, Ji Hyun;Ryu, Seong Ho;Kwon, Bong Ki;Chung, Tai Hak
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.2
    • /
    • pp.117-124
    • /
    • 2005
  • Appropriate removal of pollutants from combined sewer overflows(CSOs) and stormwater runoff is of primary concern to watershed managers trying to meet water quality standards even under a wet weather condition. Harmful substances associated with particles besides TSS and BOD are subjected to removal prior to discharge into the natural waters. Effectiveness of five major hydrodynamic separation technologies, Vortechs, Downstream Defender including Storm King for CSOs control, CDS, Stormceptor, and IHS, were evaluated in this study. There is not sufficient information for accurate evaluation of the removal efficiency for the pollutants from the stormwater runoff and CSOs. Based upon limited engineering data, however, all technologies were found to be effective in separation of heavy particles and floating solids. Technologies utilizing screens seem to have advantage in the treatment capacity than the other technologies relied fully on hydrodynamic behavior. The IHS system seems to have a strong potential in application for control of CSOs because of unique hydrodynamic behavior as well as a flexibility in opening size of the screens. Size of the particulate matter in the CSOs and stormwater runoff is found to be the most important parameter in selection of the type of the hydrodynamic separators. There exists an upper limit in the solids removal efficiency of a hydrodynamic separator, which is strongly dependent upon the particle size distribution of the CSOs and stormwater runoff.

Effect of F/R ratio of ASBR (Anaerobic Sequencing Batch Reactor) Process on Removal of the Organic Matters in Ammonia Stripped Swine Wastewater (ASBR(Anaerobic Sequencing Batch Reactor) 공정의 F/R비가 암모니아가 탈기된 축산폐수의 유기물 제거에 미치는 영향)

  • Whang, Gye-Dae;Cho, Young-Moo
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.687-694
    • /
    • 2005
  • Lab-scale experiments have been carried out to investigate the effect of F/R ratio of ASBR (Anaerobic Sequencing Batch Reactor) process on the removal of the organic matters in ammonia stripped swine wastewater. Three ASBR inoculated with sludge mixed with granular sludge of UASB (Upflow Anaerobic Sludge Blanket) and anaerobic digested sludge of municipal wastewater treatment plant were operated. Ammonia stripped swine wastewater was used as influent. Prior to conducting the experiments with varied conditions, the effect of increasing organic loading rate from 2.34 to $5.79gTCOD_{Cr}/L$-day at a fixed F/R ratio of 0.1 on the organic removal efficiency has been studied during start-up period. As the result of the experiment, under the condition of varied organic loadings, less than $4.14gTCOD_{Cr}/L$-day, the removed efficiency $TCOD_{Cr}$ of the ASBR process is 83% resulted from the mean value of effluent $TCOD_{Cr}$, 9,125 mg/L during the start-up period. Then ASBRs were operated with F/R ratio of 0.024, 0.303 and 0.91 respectively. Organic loading rate was increased from 4.56 to $15.43gTCOD_{Cr}/L$-day to investigate the effects of F/R ratio and organic loading rate on the organic removal efficiency. As the result of the experiment, less than $6.23gTCOD_{Cr}/L$/L-day, F/R ratio haven't an effect on the organic removal efficiency and the mean removal efficiency of TSS, $TCOD_{Cr}$ and $SCOD_{Cr}$ was about 80%, 86% and 78% at the all of F/R ratio. But as organic loading rate was increased from 8.54 to $12.04gTCOD_{Cr}/L$-day at the F/R ratio of 0.024, the removal efficiency of $SCOD_{Cr}$ decreased from 71% to 63%. The range of decreased removal efficiency of $SCOD_{Cr}$ at the F/R ratio of 0.024 was much more higher than at the F/R ratio of 0.303, 0.91. Thus, as organic loading rate was increased, ASBRs were operated with high F/R ratio to obtain high removal efficiency.

The Effects of DO, HRT, and Media Packing Ratio on Nitrogen Removal Efficiency in BCM-ASR System (고정상 담체를 충전한 활성슬러지 공정에서 DO농도와 HRT 및 담체 충전율 변화가 질소 제거효율에 미치는 영향)

  • Whang, Gye-Dae;Han, Bong-Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.659-669
    • /
    • 2008
  • Two sets of four parallel activated sludge reactors (ASRs) maintaining an MLSS of 3000 mg/L were operated to investigate the effect of DO, HRTs and bio-contact media (BCM) packing ratios on the removal efficiency of organic matters and nitrogen. Packing ratios of BCM to BCM-ASR systems 1, 2, 3, and 4 were 0% (suspended growth only), 10%, 15% and 20%, respectively. All systems were operated at an HRT of 4 hr, 6 hr, and 8 hr, respectively; DO concentration was maintained 0.5~1.0 mg/L and 1.5~2.0 mg/L for each HRT condition. In terms of TSS, TCODcr and SCODcr removal efficiency, all systems had a similar level of the removal efficiency under varied HRTs, and DO. But organic removal efficiency of systems with BCM was approximately 3~5% higher than systems without BCM at the same HRT and the DO. About the nitrification efficiency, with high DO (1.5~2.0 mg/L), as HRT (4 hr, 6 hr, 8 hr) or BCM packing ratio increased, the slight increment of nitrification efficiency was observed. However, under the low DO (0.5~1.0 mg/L), increase of BCM packing ratio and HRT resulted in large increase of the nitrification efficiency. At the same HRT and BCM packing ratio, the nitrification efficiency increased greatly with up to 15% as DO increased. When the HRT increased from 4hr to 8hr, the denitrification efficiency slightly increased by 5~10% only, under all DO conditions. Systems with BCM had higher denitrification efficiency, ranged 62.7~91.1% than systems without BCM showed 32.1~65.6%. And the increase in BCM packing ratio from 10% to 20% resulted in about 14~16% denitrification efficiency increment. BCM packing ratio showed great effect on the denitrification. The increase of the DO (from 0.5~1.0 mg/L to 1.5~2.0 mg/L) at the same HRT and BCM packing ratio resulted in slight decrease of denitrification efficiency with up to 7% for systems with BCM. But for systems without BCM, the denitrification efficiency decreased with up to 28%. In all system, the denitrification efficiency had more influence on the TN removal efficiency than nitrification efficiency. So, BCM packing ratio (0%, 10%, 15%, 20%) has greater effect on the TN removal than HRT and DO. The TN removal efficiency increased as packing ratio of BCM increased with up to 45%. As a result, the highest TN removal efficiency was observed 73.7% at the condition showed the highest denitrification efficiency that DO of 0.5~1.0 mg/L, an HRT of 8 hr, and 20% of BCM packing ratio was maintained.