본 논문은 지금까지 해결하지 못한 난제 중 하나인 외판원 문제의 최적 해를 구하는 발견적 알고리즘을 제안한다. 제안된 알고리즘은 초기 경로를 결정하기 위해 기존의 DNN을 변형한 SW-DNN, DW-DNN과 DC-DNN을 제안하였다. 초기 해는 DNN, SW-DNN, DW-DNN과 DC-DNN을 적용하여 최소 경로 길이를 가진 방법을 선택한다. 초기 해에 대해 최적 해를 구하기 위해 먼저 삭제 대상 간선을 선택하는 방법을 결정하였으며, 이들 간선들에 대해 지역 탐색 방법인 k-opt 중에서 2, 2.5, 3-opt를 먼저 적용하고, 삭제 대상 간선들 중 삭제되지 않은 간선들에 대해 4-opt를 적용하였다. 제안된 알고리즘을 대규모의 TSP인 26개의 유럽 도시들을 방문하는 TSP-1과 49개의 미국 도시들을 방문하는 TSP-2에 적용한 결과 모두 최적 해를 구하는데 성공하였다. 제안된 알고리즘은 지금까지 발견적 방법으로는 TSP의 최적 해를 구하지 못한다는 미신을 타파하였고, TSP의 알고리즘으로 적용할 수 있을 것이다.
조합 최적화 문제인 순회 판매원 문제(Traveling Salesman Problem, TSP)를 유전자 알고리즘(Genetic Algorithm)과 Local Search Heuristic인 Lin-Kernighan(LK) Heuristic[1]을 이용하여 접근하는 것은 최적 해를 구하기 위해 널리 알려진 방법이다. 본 논문에서는 TSP 문제를 해결하기 위한 또 다른 접근법으로 ACS(Ant Colony system) 알고리즘을 소개하고 새로운 페로몬 갱신 방법을 제시하고자 한다. ACS 알고리즘은 다수의 개미들이 경로를 만들어 가는 과정에서 각 에지상의 페로몬 정보를 이용하며, 이러한 반복적인 경로 생성 과정을 통해 최적 해를 발견하는 방법이다. ACS 기법의 전역 갱신 단계에서는 생성된 모든 경로들 중 전역 최적 경로에 속한 에지들에 대하여 페로몬을 갱신한다. 그러나 본 논문에서는 전역 갱신 규칙이 적용되기 전에 생성된 모든 에지에 대하여 페로몬을 한번 더 갱신한다. 이 때 페로몬 갱신을 위해 각 에지들의 발생 빈도수를 이용한다. 개미들이 생성한 전체 에지들의 발생 빈도수를 페로몬 정보에 대한 가중치(weight)로 부여함으로써 각 에지들에 대하여 통계적 수치를 페로몬 정보로 제공할 수 있었다. 또한 기존의 ACS 알고리즘보다 더 빠른 속도로 최적 해를 찾아내며 더 많은 에지들이 다음 번 탐색에 활용될 수 있게 함으로써 지역 최적화에 빠지는 것을 방지할 수 있다.
본 논문은 외판원 문제의 해를 쉽게 구하는 알고리즘을 제안하였다. 사전에, n(n-1)개의 데이터에 대해 각 정점에서의 거리 오름차순으로 정렬시켜 최단거리 상위 10개인 10n개를 결정하였다. 첫 번째로, 각 정점 $v_i$의 최단거리인 $r_1=d\{v_i,v_j\}$로 연결된 부분경로를 하나의 지역으로 결정하였다. $r_2$에 대해서는 지역 내 정점간 간선은 무조건 연결하고, 지역간 간선은 연결 규칙을 적용하였다. 전체적으로 하나의 해밀턴 사이클이 형성될 때까지 $r_3$ 부터는 지역간 간선만 연결하는 방법으로 정복하였다. 따라서 제안된 방법은 지역분할정복 방법이라 할 수 있다. 실제 지도상의 도시들인 TSP-1(n=26) TSP-2(n=42)와 유클리드 평면상에 랜덤하게 생성된 TSP-3(n=50)에 대해 제안된 알고리즘을 적용한 결과 TSP-1과 TSP-2는 최적해를 구하였다. TSP-3에 대해서는 Valenzuela와 Jones의 결과보다 거리를 단축시킬 수 있었다. 전수탐색 방법은 n!인데 반해, 제안된 알고리즘의 수행복잡도는 $O(n^2)$이며, 수행횟수는 최대 10n이다.
International Journal of Computer Science & Network Security
/
제21권4호
/
pp.33-40
/
2021
The traveling salesman problem (TSP) is one of the well-known and extensively studied NPC problems in combinatorial optimization. To solve it effectively and efficiently, various optimization algorithms have been developed by scientists and researchers. However, most optimization algorithms are designed based on the concept of improving route in the iterative improvement process so that the optimal solution can be finally found. In contrast, there have been relatively few algorithms to find the optimal solution using route construction mechanism. In this paper, we propose a route construction optimization algorithm to solve the symmetric TSP with the help of ratio value. The proposed algorithm starts with a set of sub-routes consisting of three cities, and then each good sub-route is enhanced step by step on both ends until feasible routes are formed. Before each subsequent expansion, a ratio value is adopted such that the good routes are retained. The experiments are conducted on a collection of benchmark symmetric TSP datasets to evaluate the algorithm. The experimental results demonstrate that the proposed algorithm produces the best-known optimal results in some cases, and performs better than some other route construction optimization algorithms in many symmetric TSP datasets.
조합 최적화 문제인 Traveling Salesman problems(TSP)을 Genetic Algorithm(GA)과 Local Search Heuristic인 Lin-Kernighan(LK) Heuristic[2]을 이용하여 접근하는 것은 최적해를 구하기 위해 널리 알려진 방법이다. 이 논문에서는 LK를 이용하여 주어진 TSP 문제에서 Local Optima를 찾고, GA를 이용하여 Local Optimal를 바탕으로 Global Optima를 찾는데 이용하게 된다. 여기서 이런 GA와 LK를 이용하여 TSP 문제를 풀 경우 해가 점점 수렴해가면서 중복된 유전자가 많이 생성된다. 이런 중복된 유전자를 제거함으로써 탐색의 범위를 보다 넓고 다양하게 검색하고, 더욱 효율적으로 최적화를 찾아내는 방법에 대해서 논하겠다. 이런 방법을 이용하여 rat195, gil262, lin318의 TSP문제에서 효율적으로 수행된다.
In this paper, the TSP(traveling salesman problem) which its costs(distance) between nodes are defined with Max($\bar{x}$, $\bar{y}$) has been dealt. In order to find a satisfactory solution for this kind of problem, we generate weighted matrix, and then develope a new heuristic problem solving method using the weighted matrix. Also we analyze the effectiveness of the newly developed heuristic method comparing it with other heuristic algorithm already exists for Euclidean TSP. Finally, we apply a new developed algorithm to real Max($\bar{x}$,$\bar{y}$) TSP such as PCB inserting.
본 논문은 NP-완전으로 다항시간 알고리즘이 존재하지 않는 대규모 외판원 문제의 최적 해를 $O(n^2)$의 다항시간으로 구하는 알고리즘을 제안하였다. 대규모 외판원 문제에서 가장 큰 문제는 처리될 데이터가 $n{\times}n$으로 n이 커질수록 기하급수적으로 증가한다. 본 논문에서는 먼저, 데이터의 양을 약 n/2의 크기로 축소시킨다. 다음으로 임의의 정점에서 시작하여 양방향으로 경로를 탐색하는 방법을 적용하였다. 제안된 알고리즘을 26개의 유럽 도시들을 방문하는 TSP-1과 46개 미국 도시들을 방문하는 TSP-2에 적용한 결과 모두 최적 해를 $O(n^2)$ 수행 복잡도로 빠르게 구하는데 성공하였다. 따라서 제안된 알고리즘은 TSP의 일반화된 알고리즘으로 적용할 수 있을 것이다.
IEIE Transactions on Smart Processing and Computing
/
제3권4호
/
pp.246-250
/
2014
Large mutual capacitance touch screen panels (TSP) are susceptible to display and ambient noise. This paper presents a multi-touch detection algorithm using an efficient noise compensation technique for large mutual capacitance TSPs. The sources of noise are presented and analyzed. The algorithm includes the steps to overcome each source of noise. The algorithm begins with a calibration technique to overcome the TSP mutual capacitance variation. The algorithm also overcomes the shadow effect of a hand close to TSP and mutual capacitance variation by dynamic threshold calculations. Time and space filters are also used to filter out ambient noise. The experimental results were used to determine the system parameters to achieve the best performance.
This paper presents an efficient SOFM(self-organizing feature map) algorithm for the solution of the large scale TSPs(traveling salesman problems). Because no additional winner neuron for each city is created in the next competition, the proposed algorithm requires just only the N output neurons and 2N connections, which are fixed during the whole process, for N-city TSP, and it does not requires any extra algorithm of creation of deletion of the neurons. And due to direct exploitation of the output potential in adaptively controlling the neighborhood, the proposed algorithm can obtain higher convergence rate to the suboptimal solutions. Simulation results show about 30% faster convergence and better solution than the conventional algorithm for solving the 30-city TSP and even for the large scale of 1000-city TSPs.
Two different algorithms for traveling salesman problem(TSP) will be discussed. One is the engineering approach to the TSP. The other one is Branch-and-Bound algorithm to take advantage of the special structure of combinational problems. Also a generalization of TSP will be presented.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.