• Title/Summary/Keyword: TSP 알고리즘

Search Result 88, Processing Time 0.018 seconds

S-MINE Algorithm for the TSP (TSP 경로탐색을 위한 S-MINE 알고리즘)

  • Hwang, Sook-Hi;Weon, Il-Yong;Ko, Sung-Bum;Lee, Chang-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.18B no.2
    • /
    • pp.73-82
    • /
    • 2011
  • There are a lot of people trying to solve the Traveling Salesman Problem (TSP) by using the Meta Heuristic Algorithms. TSP is an NP-Hard problem, and is used in testing search algorithms and optimization algorithms. Also TSP is one of the models of social problems. Many methods are proposed like Hybrid methods and Custom-built methods in Meta Heuristic. In this paper, we propose the S-MINE Algorithm to use the MINE Algorithm introduced in 2009 on the TSP.

A DNA Sequence Generation Algorithm for Traveling Salesman Problem using DNA Computing with Evolution Model (DNA 컴퓨팅과 진화 모델을 이용하여 Traveling Salesman Problem를 해결하기 위한 DNA 서열 생성 알고리즘)

  • Kim, Eun-Gyeong;Lee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.222-227
    • /
    • 2006
  • Recently the research for Traveling Salesman Problem (TSP) using DNA computing with massive parallelism has been. However, there were difficulties in real biological experiments because the conventional method didn't reflect the precise characteristics of DNA when it express graph. Therefore, we need DNA sequence generation algorithm which can reflect DNA features and reduce biological experiment error. In this paper we proposed a DNA sequence generation algorithm that applied DNA coding method of evolution model to DNA computing. The algorithm was applied to TSP, and compared with a simple genetic algorithm. As a result, the algorithm could generate good sequences which minimize error and reduce the biologic experiment error rate.

New Population initialization and sequential transformation methods of Genetic Algorithms for solving optimal TSP problem (최적의 TSP문제 해결을 위한 유전자 알고리즘의 새로운 집단 초기화 및 순차변환 기법)

  • Kang, Rae-Goo;Lim, Hee-Kyoung;Jung, Chai-Yeoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.622-627
    • /
    • 2006
  • TSP(Traveling Salesman Problem) is a problem finding out the shortest distance out of many courses where given cities of the number of N, one starts a certain city and turns back to a starting city, visiting every city only once. As the number of cities having visited increases, the calculation rate increases geometrically. This problem makes TSP classified in NP-Hard Problem and genetic algorithm is used representatively. To obtain a better result in TSP, various operators have been developed and studied. This paper suggests new method of population initialization and of sequential transformation, and then proves the improvement of capability by comparing them with existing methods.

Optimal Solution of a Large-scale Travelling Salesman Problem applying DNN and k-opt (DNN과 k-opt를 적용한 대규모 외판원 문제의 최적 해법)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.249-257
    • /
    • 2015
  • This paper introduces a heuristic algorithm to NP-hard travelling salesman problem. The proposed algorithm, in its bid to determine initial path, applies SW-DNN, DW-DNN, and DC-DNN, which are modified forms of the prevalent Double-sided Nearest Neighbor Search and searches the minimum value. As a part of its optimization process on the initial solution, it employs 2, 2.5, 3-opt of a local search k-opt on candidate delete edges and 4-opt on undeleted ones among them. When tested on TSP-1 of 26 European cities and TSP-2 of 49 U.S. cities, the proposed algorithm has successfully obtained optimal results in both, disproving the prevalent disbelief in the attainability of the optimal solution and making itself available as a general algorithm for the travelling salesman problem.

A Polynomial Time Algorithm of a Traveling Salesman Problem (외판원 문제의 다항시간 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.12
    • /
    • pp.75-82
    • /
    • 2013
  • This paper proposes a $O(n^2)$ polynomial time algorithm to obtain optimal solution for Traveling Salesman problem that is a NP-complete because polynomial time algorithm has been not known yet. The biggest problem in a large-scale Traveling Salesman problem is the fact that the amount of data to be processed is $n{\times}n$, and thus as n increases, the data increases by multifold. Therefore, this paper proposes a methodology by which the data amount is first reduced to approximately n/2. Then, it seeks a bi-directional route at a random point. The proposed algorithm has proved to be successful in obtaining the optimal solutions with $O(n^2)$ time complexity when applied to TSP-1 with 26 European cities and TSP-2 with 46 cities of the USA. It could therefore be applied as a generalized algorithm for TSP.

DNA Computing Adopting DNA coding Method to solve Traveling Salesman Problem (Traveling Salesman Problem을 해결하기 위한 DNA 코딩 방법을 적용한 DNA 컴퓨팅)

  • Kim, Eun-Gyeong;Yun, Hyo-Gun;Lee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.105-111
    • /
    • 2004
  • DNA computing has been using to solve TSP (Traveling Salesman Problems). However, when the typical DNA computing is applied to TSP, it can`t efficiently express vertices and weights of between vertices. In this paper, we proposed ACO (Algorithm for Code Optimization) that applies DNA coding method to DNA computing to efficiently express vertices and weights of between vertices for TSP. We applied ACO to TSP and as a result ACO could express DNA codes which have variable lengths and weights of between vertices more efficiently than Adleman`s DNA computing algorithm could. In addition, compared to Adleman`s DNA computing algorithm, ACO could reduce search time and biological error rate by 50% and could search for a shortest path in a short time.

Efficient Path Search Method using Ant Colony System in Traveling Salesman Problem (순회 판매원 문제에서 개미 군락 시스템을 이용한 효율적인 경로 탐색)

  • 홍석미;이영아;정태충
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.9
    • /
    • pp.862-866
    • /
    • 2003
  • Traveling Salesman Problem(TSP) is a combinational optimization problem, Genetic Algorithm(GA) and Lin-Kernighan(LK) Heuristic[1]that is Local Search Heuristic are one of the most commonly used methods to resolve TSP. In this paper, we introduce ACS(Ant Colony System) Algorithm as another approach to solve TSP and propose a new pheromone updating method. ACS uses pheromone information between cities in the Process where many ants make a tour, and is a method to find a optimal solution through recursive tour creation process. At the stage of Global Updating of ACS method, it updates pheromone of edges belonging to global best tour of created all edge. But we perform once more pheromone update about created all edges before global updating rule of original ACS is applied. At this process, we use the frequency of occurrence of each edges to update pheromone. We could offer stochastic value by pheromone about each edges, giving all edges' occurrence frequency as weight about Pheromone. This finds an optimal solution faster than existing ACS algorithm and prevent a local optima using more edges in next time search.

Partial Inverse Traveling Salesman Problems on the Line

  • Chung, Yerim;Park, Myoung-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.11
    • /
    • pp.119-126
    • /
    • 2019
  • The partial inverse optimization problem is an interesting variant of the inverse optimization problem in which the given instance of an optimization problem need to be modified so that a prescribed partial solution can constitute a part of an optimal solution in the modified instance. In this paper, we consider the traveling salesman problem defined on the line (TSP on the line) which has many applications such as item delivery systems, the collection of objects from storage shelves, and so on. It is worth studying the partial inverse TSP on the line, defined as follows. We are given n requests on the line, and a sequence of k requests that need to be served consecutively. Each request has a specific position on the real line and should be served by the server traveling on the line. The task is to modify as little as possible the position vector associated with n requests so that the prescribed sequence can constitute a part of the optimal solution (minimum Hamiltonian cycle) of TSP on the line. In this paper, we show that the partial inverse TSP on the line and its variant can be solved in polynomial time when the sever is equiped with a specific internal algorithm Forward Trip or with a general optimal algorithm.

Distributed Genetic Algorithm using aster/slave model for the TSP (TSP를 위한 마스터/슬레이브 모델을 이용한 분산유전 알고리즘)

  • Jung-Sook Kim
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.2
    • /
    • pp.185-190
    • /
    • 2002
  • As the TSP(Traveling Salesman Problem) belongs to the class of NP-complete problems, various techniques are required for finding optimum or near optimum solution to the TSP. This paper designs a distributed genetic algorithm in order to reduce the execution time and obtain more near optimal using multi-slave model for the TSP. Especially, distributed genetic algorithms with multiple populations are difficult to configure because they are controlled by many parameters that affect their efficiency and accuracy. Among other things, one must decide the number and the size of the populations (demes), the rate of migration, the frequency of migrations, and the destination of the migrants. In this paper, I develop random dynamic migration rate that controls the size and the frequency of migrations. In addition to this, I design new migration policy that selects the destination of the migrants among the slaves

  • PDF

A Study on the Active Transit Signal Priority Control Algorithm based on Bus Demand using UTIS (UTIS를 활용한 수요 기반의 능동형 버스우선신호 제어 알고리즘에 관한 연구)

  • Hong, Gyeong-Sik;Jeong, Jun-Ha;An, Gye-Hyeong;Lee, Yeong-In
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.6
    • /
    • pp.107-116
    • /
    • 2011
  • In this paper, we implement an algorithm of transit signal priority control that not only maximizes service quality and efficiency of bus, but also minimizes the control delay of passenger cars using UTIS currently being deployed and operated in Seoul national capital area. For this purpose, we propose an algorithm that coordinates the strength of TSP by estimating bus demand. Typically, the higher the strength of TSP is on main street, the bigger the control delay is on the cross street. Motivated by this practical difficulty, we proposes an algorithm that coordinates TSP's strength by checking the degree of saturation of cross street. Also, we verify the possibility of field implementation via simulation analysis using CORSIM RTE based HILS (Hardware In the Loop Simulation). The result shows that travel time of bus improves about 10 percent without increasing control delay of passenger cars by TSP. We expect the result of this research to contribute to increasing the overall transit ridership in this country.