• Title/Summary/Keyword: TSOP(Thin Small Outline Package)

Search Result 5, Processing Time 0.016 seconds

Numerical Analysis for Thermal-deformation Improvement in TSOP(Thin Small Outline Package) by Anti-deflection Adhesives (TSOP(Thin Small Outline Package) 열변형 개선을 위한 전산모사 분석)

  • Kim, Sang-Woo;Lee, Hai-Joong;Lee, Hyo-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.3
    • /
    • pp.31-35
    • /
    • 2013
  • TSOP(Thin Small Outline Package) is the IC package using lead frame, which is the type of low cost package for white electronics, auto mobile, desktop PC, and so on. Its performance is not excellent compared to BGA or flip-chip CSP, but it has been used mostly because of low price of TSOP package. However, it has been issued in TSOP package that thermal deflection of lead frame occurs frequently during molding process and Au wire between semiconductor die and pad is debonded. It has been required to solve this problem through substituting materials with low CTE and improving structure of lead frame. We focused on developing the lead frame structure having thermal stability, which was carried out by numerical analysis in this study. Thermal deflection of lead frame in TSOP package was simulated with positions of anti-deflection adhesives, which was ranging 198 um~366 um from semiconductor die. It was definitely understood that thermal deflection of TSOP package with anti-deflection adhesives was improved as 30.738 um in the case of inside(198 um), which was compared to that of the conventional TSOP package. This result is caused by that the anti-deflection adhesives is contributed to restrict thermal expansion of lead frame. Therefore, it is expected that the anti-deflection adhesives can be applied to lead frame packages and enhance their thermal deflection without any change of substitutive materials with low CTE.

A Study on the Life Prediction and Quality Improvement of Joint in IC Package (플라스틱 IC 패키지 접합부의 수명예측 및 품질향상에 관한 연구)

  • 신영의;김종민
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.124-132
    • /
    • 1999
  • Thermal fatigue strength of the solder joints is the most critical issue for TSOP(Thin Small Outline Package) because the leads of this package are extremely short and thermal deformation cannot be absorbed by the deflection of the lead. And the TSOP body can be subject to early fatigue failures in thermal cycle environments. This paper was discussed distribution of thermal stresses at near the joint between silicon chip and die pad and investigated their reliability of solder joints of TSOP with 42 alloy clad lead frame on printed circuit board through FEM and 3 different thermal cycling tests. It has been found that the stress concentration around the encapsulated edge structure for internal crack between the silicon chip and Cu alloy die pad. And using 42 alloy clad, The reliability of TSOP body was improved. In case of using 42 alloy clad die pad(t=0.03mm). $$\sigma$_{VMmax}$ is 69Mpa. It is showed that 15% improvement of the strength in the TSOP body in comparison with using Cu alloy die pad $($\sigma$_{VMmax}$=81MPa). In solder joint of TSOP, the maximum equivalent plastic strain and Von Mises stress concentrate on the heel of solder fillet and crack was initiated in it's region and propagated through the interface between lead and solder. Finally, the modified Manson-Coffin equation and relationship of the ratio of $N_{f}$ to nest(η) and cumulative fracture probability(f) with respect to the deviations of the 50% fracture probability life $(N_{f 50%})$ were achieved.

  • PDF

A study on electrical characteristics fo high speed bottom leaded plastic(BLP) package (고속 bottom leaded plastic(BLP) package의 전기적 특성에 관한 연구)

  • 신명진;유영갑
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.4
    • /
    • pp.61-70
    • /
    • 1998
  • The electrical performance of a package is extremely important for high speed digital system operations. CSP(chip scale package) is known to have better electrical performance than the convnetional packages. In this paper, the electrical performance of the BLP(bottom leaded plastic) package, a kind of CSP, has been alayzed by both simulation and real measurement. The electrical perfdormance of a BLP was compared with that of the conventioanl TSOP(thin small outline package). The leadinductanceand lead capacitance were used for the comparison purposes. The new BLP design provides much better electrical performance that TSOP package. It has about 40% favorable parameter values.

  • PDF

Magnetic and Thermal Evaluation of a Magnetic Tunneling Junction Current Sensor Package

  • Rhod, Eduardo;Peter, Celso;Hasenkamp, Willyan;Grion, Agner
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.49-55
    • /
    • 2016
  • Nowadays there are magnetic sensors in a wide variety of equipment such as computers, cars, airplanes, medical and industrial instruments. In many of these applications the magnetic sensors offer safe and non-invasive means of detection and are more reliable than other technologies. The electric current in a conductor generates a magnetic field detected by this type of sensor. This work aims to define a package dedicated to an electrical current sensor using a MTJ (Magnetic Tunnel Junction) as a sensing device. Four different proposals of packaging, three variations of the chip on board (CoB) package type and one variation of the thin small outline package (TSOP) were analyzed by COMSOL modeling software by simulating a brad range of current injection. The results obtained from the thermal and magnetic analysis has proven to be very important for package improvements, specially for heat dissipation performance.

Quality improvement on joints of electronic materials and its reliability by Fe-Ni alloy clad lead frame (Fe-Ni 합금 클래드 리드 프레임을 이용한 전자 재료 접합부의 품질향상과 그 신뢰성)

  • 신영의;최인수;안승호
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.82-95
    • /
    • 1995
  • This paper discusses distribution of thermal stress, strain at near the joint and investigates the reliability of solder joints of electronic devices on a printed circuit board. As Electronic devices are composed of different materials, thermal stresses generate at near the interface, such as solder joints and interface between lC device and lead frame pad due to the differences of thermal expansion coefficients, As results of thermal stress, strain, micro crack often occurs thermal fatigue fracture at the interface of different materials, The initiation and propagation of micro crack depend on the environmental conditions, such as storage temperature and thermal cycling. Finally, this paper experimentally shows a way to suppress micro cracks by using Fe-Ni alloy clad lead frame, and investigates crack and thermal fatigue fracture of TSOP(Thin small outline package) type on printed circuit board.

  • PDF