• Title/Summary/Keyword: TSMC

Search Result 188, Processing Time 0.032 seconds

High-Performance Multiplier Using Modified m-GDI(: modified Gate-Diffusion Input) Compressor (m-GDI 압축 회로를 이용한 고성능 곱셈기)

  • Si-Eun Lee;Jeong-Beom Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.285-290
    • /
    • 2023
  • Compressors are widely used in high-speed electronic systems and are used to reduce the number of operands in multiplier. The proposed compressor is constructed based on the m-GDI(: modified gate diffusion input) to reduce the propagation delay time. This paper is compared the performance of compressors by applying 4-2, 5-2 and 6-2 m-GDI compressors to the multiplier, respectively. As a simulation results, compared to the 8-bit Dadda multiplier using the 4-2 and 6-2 compressor, the multiplier using the 5-2 compressor is reduced propagation delay time 13.99% and 16.26%, respectively. Also, the multiplier using the 5-2 compressor is reduced PDP(: Power Delay Product) 4.99%, 28.95% compared to 4-2 and 6-2 compressor, respectively. However, the multiplier using the 5-2 compression circuit is increased power consumption by 10.46% compared to the multiplier using the 4-2 compression circuit. In conclusion, the 8-bit Dadda multiplier using the 5-2 compressor is superior to the multipliers using the 4-2 and 6-2 compressors. The proposed circuit is implemented using TSMC 65nm CMOS process and its feasibility is verified through SPECTRE simulation.

A Design of Ultra-low Noise LDO Regulator for Low Voltage MEMS Microphones (저전압 MEMS 마이크로폰용 초저잡음 LDO 레귤레이터 설계)

  • Moon, Jong-il;Nam, Chul;Yoo, Sang-sun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.630-633
    • /
    • 2021
  • Microphones can convert received voice signals to electric signals. They have been widely used in various industries such as radios, smart devices and vehicles. Recently, the demands for small size and high sensitive microphones are increased according to the minimization of wireless earphone with the development of smart phone. A MEMS system is a good candidate for an ultra-small size microphone of a next generation and a read out IC for high sensitive MEMS sensor is researched from many industries and academies. Since the microphone system has a high sensitivity from environment noise and electric system noise, the system requires a low noise power supply and some low noise design techniques. In this paper, a low noise LDO is presented for small size MEMS microphone systems. The input supply voltage of the LDO is 1.5-3.6V, and the output voltage is 1.3V. Then, it can support to 5mA in the light load condition. The integrated output noise of proposed LDO form 20Hz to 20kHz is about 1.9uV. These post layout simulation results are performed with TSMC 0.18um CMOS technology and the size of layout is 325㎛ × 165㎛.

  • PDF

A Design of CMOS 5GHz VCO using Series Varactor and Parallel Capacitor Banks for Small Kvco Gain (작은 Kvco 게인를 위한 직렬 바랙터와 병렬 캐패시터 뱅크를 이용한 CMOS 5GHz VCO 설계)

  • Mi-Young Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.139-145
    • /
    • 2024
  • This paper presents the design of a voltage controlled oscillator (VCO) which is one of the key building blocks in modern wireless communication systems with small VCO gain (Kvco) variation. To compensate conventional large Kvco variation, a series varactor bank has been added to the conventional LC-tank with parallel capacitor bank array. And also, in order to achieve excellent phase noise performance while maintaining wide tuning range, a mixed coarse/fine tuning scheme(series varactor array and parallel capacitor array) is chosen. The switched varactor array bank is controlled by the same digital code for switched capacitor array without additional digital circuits. For use at a low voltage of 1.2V, the proposed current reference circuit in this paper used a current reference circuit for safety with the common gate removed more safely. Implemented in a TSMC 0.13㎛ CMOS RF technology, the proposed VCO can be tuned from 4.4GH to 5.3GHz with the Kvco (VCO gain ) variation of less than 9.6%. While consuming 3.1mA from a 1.2V supply, the VCO has -120dBc/Hz phase noise at 1MHz offset from the carrier of the 5.3 GHz.

A Study on Elimination Solution of Parasitic Effect to Improve Area Efficiency and Frequency Stability of Relaxation Oscillator (이완 발진기의 면적 효율성과 주파수 안정성 향상을 위한 기생성분 효과 제거 기법연구)

  • Lee, Seung-Woo;Lee, Min-Woong;Kim, Ha-Chul;Cho, Seong-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.538-542
    • /
    • 2018
  • In order to generate a clock source with low cost and high performance in system on chip(SoC), a relaxation oscillator with stable output characteristics according to PVT(process, voltage and temperature) fluctuation require a low area and a low power. In this paper, we propose a solution to reduce the current loss caused by parasitic components in the conventional relaxation oscillator. Since the slew rate of the bias current and the capacitor are adjusted to be the same through the proposed solution, a relaxation oscillator with low area characteristics is designed for the same clock source frequency implementation. The proposed circuit is designed using the TSMC CMOS 0.18um process. The Simulation results show that the relaxation oscillator using the proposed solution can prevent the current loss of about $279{\mu}A$ and reduce the total chip area by 20.8% compared with the conventional oscillator in the clock source frequency of 96 MHz.

Design of Variable Gain Low Noise Amplifier Using PTAT Bandgap Reference Circuit (PTAT 밴드갭 온도보상회로를 적용한 가변 이득 저잡음 증폭기 설계)

  • Choi, Hyuk-Jae;Go, Jae-Hyeong;Kim, Koon-Tae;Lee, Je-Kwang;Kim, Hyeong-Seok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.9 no.4
    • /
    • pp.141-146
    • /
    • 2010
  • In this paper, bandgap reference PTAT(Proportional to Absolute Temperature) circuit and flexible gain control of LNA(Low Noise Amplifier) which is usable in Zigbee system of 2.4GHz band are designed by TSMC $0.18{\mu}m$ CMOS library. PTAT bandgap reference circuit is proposed to minimize the instability of CMOS circuit which may be unstable in temperature changes. This circuit is designed such that output voltage remains within 1.3V even when the temperature varies from $-40^{\circ}C$ to $-50^{\circ}C$ when applied to the gate bias voltage of LNA. In addition, the LNA is designed to be operated on 2.4GHz which is applicable to Zigbee system and able to select gains by changing output impedance using 4 NMOS operated switches. The simulation result shows that achieved gain is 14.3~17.6dB and NF (Noise Figure) 1.008~1.032dB.

  • PDF

Design of a 20 Gb/s CMOS Demultiplexer Using Redundant Multi-Valued Logic (중복 다치논리를 이용한 20 Gb/s CMOS 디멀티플렉서 설계)

  • Kim, Jeong-Beom
    • The KIPS Transactions:PartA
    • /
    • v.15A no.3
    • /
    • pp.135-140
    • /
    • 2008
  • This paper describes a high-speed CMOS demultiplexer using redundant multi-valued logic (RMVL). The proposed circuit receives serial binary data and is converted to parallel redundant multi-valued data using RMVL. The converted data are reconverted to parallel binary data. By the redundant multi-valued data conversion, the RMVL makes it possible to achieve higher operating speeds than that of a conventional binary logic. The implemented demultiplexer consists of eight integrators. Each integrator is composed of an accumulator, a window comparator, a decoder and a D flip flop. The demultiplexer is designed with TSMC $0.18{\mu}m$ standard CMOS process. The validity and effectiveness are verified through the HSPICE simulation. The demultiplexer is achieved the maximum data rate of 20 Gb/s and the average power consumption of 95.85 mW.

A study on the Design of Gain Variable Low Noise amplifier for Zigbee System (Zigbee시스템에 적용 가능한 Gain-Variable LNA 설계 연구)

  • Choi, Hyuk-Jae;Ko, Jae-Hyeong;Choi, Jin-Kyu;Kim, Koon-Tae;Park, Jun-Hong;Yun, Sun-Woo;Kim, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1597_1598
    • /
    • 2009
  • In this paper, the techniques and design focus of flexible gain coltrol of LAN(Low Noise Amplifier) using the TSMC 0.18um CMOS process. The design frequency set up a standard on 2.4GHz that is used in Zigbee system. The design concepts a basic Cascode LNA techniques and a swiching circuit consisted of 4 NMOS of load resistance, which convert the output impedenceby tuning on or off. The result show the gain change by NMOS operated swich. The simulation result is that Gain is 10.23~12.96dB and NF(Noise Figure) is 1.41~1.47dB.

  • PDF

A Medium-Voltage Matrix Converter Topology for Wind Power Conversion with Medium Frequency Transformers

  • Gu, Chunyang;Krishnamoorthy, Harish S.;Enjeti, Prasad N.;Zheng, Zedong;Li, Yongdong
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1166-1177
    • /
    • 2014
  • A new type of topology with medium-frequency-transformer (MFT) isolation for medium voltage wind power generation systems is proposed in this paper. This type of converter is a high density power conversion system, with high performance features suitable for next generation wind power systems in either on-shore or off-shore applications. The proposed topology employs single-phase cascaded multi-level AC-AC converters on the grid side and three phase matrix converters on the generator side, which are interfaced by medium frequency transformers. This avoids DC-Link electrolytic capacitors and/or resonant L-C components in the power flow path thereby improving the power density and system reliability. Several configurations are given to fit different applications. The modulation and control strategy has been detailed. As two important part of the whole system, a novel single phase AC-AC converter topology with its reliable six-step switching technique and a novel symmetrical 11-segment modulation strategy for two stage matrix converter (TSMC) is proposed at the special situation of medium frequency chopping. The validity of the proposed concept has been verified by simulation results and experiment waveforms from a scaled down laboratory prototype.

Design of a TRIAC Dimmable LED Driver Chip with a Wide Tuning Range and Two-Stage Uniform Dimming

  • Chang, Changyuan;Li, Zhen;Li, Yuanye;Hong, Chao
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.640-650
    • /
    • 2018
  • A TRIAC dimmable LED driver with a wide tuning range and a two-stage uniform dimming scheme is proposed in this paper. To solve the restricted dimming range problem caused by the limited conduction ratio of TRIAC dimmers, a conduction ratio compensation technique is introduced, which can increase the output current up to the rated output current when the TRIAC dimmer turns to the maximum conduction ratio. For further optimization, a two-stage uniform dimming diagram with a rapid dimming curve and a slow dimming curve is designed to make the LED driver regulated visually uniform in the whole adjustable range of the TRIAC dimmer. The proposed control chip is fabricated in a TSMC $0.35{\mu}m$ 5V/650V CMOS/LDMOS process, and verified on a 21V/500mA circuit prototype. The test results show that, in the 90V/60Hz~132V/60Hz ac input range, the voltage linear regulation is 2.6%, the power factor is 99.5% and the efficiency is 83%. Moreover, in the dimming mode, the dimming rate is less than 1% when the maximum dimming current is 516mA and the minimum dimming current is only about 5mA.

Design of 24-GHz/77-GHz Dual Band CMOS Low Noise Amplifier (24-GHz/77-GHz 이중 대역 CMOS 저 잡음 증폭기 설계)

  • Sung, Myeong-U;Kim, Shin-Gon;Rastegar, Habib;Choi, Geun-Ho;Tall, Abu Abdoulaye;Kurbanov, Murod;Choi, Seung-Woo;Ryu, Jee-Youl;Noh, Seok-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.824-825
    • /
    • 2015
  • 본 논문은 차량 레이더용 24-GHz/77-GHz 이중 대역 CMOS 저 잡음 증폭기를 제안한다. 이러한 회로는 1.8볼트 전원에서 동작하며, 저 전압 전원 공급에서도 높은 전압 이득과 낮은 잡음지수를 가지도록 설계하였다. 제안한 회로는 TSMC $0.13-{\mu}m$ 혼성신호/고주파 CMOS 공정($f_T/f_{MAX}=120/140GHz$)으로 설계되어 있다. 전체 칩 면적을 줄이기 위해 가능한한 많은 부분에 실제 수동형 인덕터 대신 전송선을 이용하였다. 제안한 회로는 최근 발표된 연구결과에 비해 높은 전압 이득, 낮은 잡음지수 및 작은 칩 크기 특성을 보였다.

  • PDF