• Title/Summary/Keyword: TSK fuzzy Model

Search Result 65, Processing Time 0.021 seconds

Design of TSK Fuzzy Nonlinear Control System for Ship Steering (선박조타의 TSK 퍼지 비선형제어시스템 설계)

  • Chae, Yang-Bum;Lee, Won-Chan;Kang, Geun-Taek
    • Journal of Navigation and Port Research
    • /
    • v.26 no.2
    • /
    • pp.193-197
    • /
    • 2002
  • This paper suggests a method to design TSK(Takagi-Sugeno-Kang) fuzzy nonlinear control system for automatic steering system which contains the nonlinear component of ship's maneuvering equation. A TSk fuzzy model can be identified using input-output data and represent a nonlinear system very well. A TSK fuzzy controller can be designed systematically from a TSK fuzzy model because the consequent part of TSK fuzzy rule is a linear input-output equation having a constant term. Therefore, this paper suggests the method identifying the TSK fuzzy model and designing the TSK fuzzy controller based on the TSK fuzzy model for ship steering.

Backing up Control of a Truck-Trailer using TSK Fuzzy System (TSK 퍼지시스템을 이용한 트럭-트레일러의 후진 제어)

  • 김종화;이원창;강근택
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.133-136
    • /
    • 2003
  • This paper presents a fuzzy control scheme for backing up control of Truck-Trailer, which is nonlinear and unstable by using TSK(Takagi-Sugeno-kang) fuzzy system. The nonlinear system of Truck-Trailer was expressed by using TSK fuzzy model, and the TSK fuzzy controller was designed from TSK fuzzy model. The usefulness of the proposed algorithm for backing up truck-trailer is certificated by the computer simulations.

  • PDF

Design of TSK Fuzzy Controller Based on TSK Fuzzy Model (TSK퍼지모델로부터 TSK퍼지제어기의 설계)

  • Kang, Geun-Taek;Lee, Won-Chang
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.11
    • /
    • pp.53-67
    • /
    • 1998
  • This paper suggests a method designing the TSK fuzzy controller based on the TSK fuzzy model, which guarantees the stability of the closed loop system and makes the response of the closed loop system to be a desired one. This paper deals with the general type of TSK fuzzy model of which consequents are affine equations having a constant term. The TSK fuzzy controller suggested in this paper is designed by using the pole placement which developed for the linear systems and makes the closed loop system have the same behavior as a desired linear system. A reference input can be introduced to the suggested TSK fuzzy controller and an integral action also can be introduced. Simulation results reveal that the suggested methods are practically feasible. This paper deals with both the continuous systems and the discrete systems.

  • PDF

Stability Analysis of TSK Fuzzy Systems (TSK퍼지 시스템의 안정도 해석)

  • 강근택;이원창
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.4
    • /
    • pp.53-61
    • /
    • 1998
  • This paper describes the stability analysis of TSK (Takagi-Sugeno-Kang) fuzzy systems which can represent a large class of nonlinear systems with good accuracy. A TSK fuzzy model consists of TSK fuzzy rules and the consequent of each fuzzy rule is a linear input-output equation with a constant term. There may exist equilibrium points more than one in the TSK fuzzy model and each equilibrium point rnay also have different nature of stability. The local stability of an equilibrium point is determined by eigenvalues of the Jacobian matrix of the linearized TSK fuzzy model around the equilibrium point. Stability of both the continuous-time and the discrete-time systems is analyzed in this paper.

  • PDF

Design of Fuzzy PID Controllers using TSK Fuzzy Systems (TSK 퍼지 시스템을 이용한 퍼지 PID 제어기 설계)

  • Kang, Geuntaek;Oh, Kabsuk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.102-109
    • /
    • 2014
  • In this paper, an algorithm to design fuzzy PID controllers is proposed. The proposed controllers are composed of fuzzy rules of which consequences are linear PID controllers and are designed with help of TSK fuzzy controllers. TSK fuzzy controllers are designed from TSK fuzzy model using pole assignment and have outstanding ability making the output response of nonlinear systems similar to the desired one. However, because of its structure complexity the TSK fuzzy controller is difficult to be used in industry. The proposed controllers have PID controller structure which can be easily realized, and are designed by using the data obtained from control simulations with TSK fuzzy controllers. To verify the proposed algorithm, two example simulations are performed.

On the Derivation of TSK Fuzzy Model for Nonlinear Differentical Equations (비선형 미분방정식의 TSK 퍼지 모델 유도에 관하여)

  • 이상민;조중선
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.8
    • /
    • pp.720-725
    • /
    • 2001
  • Derivation of TSK fuzzy model from nonlinear differential equation is fundamental issue in the field of theoretical fuzzy control. The method which does not yield affine local differential equations at off-equilibrium points is proposed in this paper. A prototype TSK fuzzy model which has triangular membership functions for linguistic terms of the antecedent part is derived systematically. And then GA is used to modify the membership functions optimally. Simulation results show the validity of the proposed method.

  • PDF

TSK Fuzzy Model Based Hybrid Adaptive Control of Nonlinear Systems (비선형 시스템의 TSK 퍼지모델 기반 하이브리드 적응제어)

  • Kim, You-Keun;Kim, Jae-Hun;Hyun, Chang-Ho;Kim, Eun-Tai;Park, Mi-Gnon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.211-216
    • /
    • 2004
  • In this thesis, we present the Takagi-Sugeno-Kang (TSK) fuzzy model based adaptive controller and adaptive identification for a general class of uncertain nonlinear dynamic systems. We use an estimated model for the unknown plant model and use this model for designing the controller. The hybrid adaptive control combined direct and indirect adaptive control based on TSK fuzzy model is constructed. The direct adaptive law can be showed by ignoring the identification errors and fails to achieve parameter convergence. Thus, we propose an TSK fuzzy model based hybrid adaptive (HA) law combined of the tracking error and the model ins error to adjust the parameters. Using a Lyapunov synthesis approach, the proposed hybrid adaptive control is proved. The hybrid adaptive law (HA) is better than the direct adaptive (DA) method without identifying the model ins error in terms of faster and improved tracking and parameter convergence. In order to show the applicability of the proposed method, it is applied to the inverted pendulum system and the performance is verified by some simulation results.

  • PDF

Transformation of TSK fuzzy systems into fuzzy systems with singleton consequents and its applications (TSK 퍼지시스템을 결론부가 singleton인 퍼지시스템으로 표현하는 방법과 그 응용)

  • Chae, Yang-Beom;Lee, Won-Chang;Gang, Geun-Taek
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.1
    • /
    • pp.48-59
    • /
    • 2002
  • TSK(Takagi-Sugeno-Kang) fuzzy models with linear equations consequents, which represent complex nonlinear systems very well with a few rules, can be easily identified systematically by using input-output data. Many algorithms designing TSK fuzzy controllers based on TSK fuzzy models, which guarantees the stability of the closed system, have been suggested. On the contrary, singleton fuzzy models with singleton consequents can be easily understood and adjusted. In this paper, in order to utilize the merits of TSK fuzzy systems and singleton fuzzy systems, an algorithm transforming a TSK fuzzy model into a singleton fuzzy model having the same input-output relation is suggested. The suggested algorithm is applied to a fuzzy modelling example and a fuzzy controller design example.

Robust Camera Calibration using TSK Fuzzy Modeling

  • Lee, Hee-Sung;Hong, Sung-Jun;Kim, Eun-Tai
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.216-220
    • /
    • 2007
  • Camera calibration in machine vision is the process of determining the intrinsic camera parameters and the three-dimensional (3D) position and orientation of the camera frame relative to a certain world coordinate system. On the other hand, Takagi-Sugeno-Kang (TSK) fuzzy system is a very popular fuzzy system and approximates any nonlinear function to arbitrary accuracy with only a small number of fuzzy rules. It demonstrates not only nonlinear behavior but also transparent structure. In this paper, we present a novel and simple technique for camera calibration for machine vision using TSK fuzzy model. The proposed method divides the world into some regions according to camera view and uses the clustered 3D geometric knowledge. TSK fuzzy system is employed to estimate the camera parameters by combining partial information into complete 3D information. The experiments are performed to verify the proposed camera calibration.

Transformation of TSK fuzzy systems into fuzzy systems with singleton consequents and its application (TSK퍼지시스템을 결론부가 singleton인 퍼지시스템으로 표현하는 방법과 그 응용)

  • 채양범;오갑석;이원창;강근택
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.225-231
    • /
    • 1998
  • TSK fuzzy system can represent effectively the behavior of a complex nonlinear system with low number of rules with the desired accuracy and guarantee the stability of the closed loop system, while the interpretation of the rules is difficult due to the functional nature of the consequents. On the contrary, fuzzy controller with singleton consequents is understandable intuitively and adjustable the rules easily due to qualitative expression of the rules. Ideally, one would like to combine the positive identification properties of TSK fuzzy system with the advantages of fuzzy controller with singleton consequents. Therefore, this paper suggests a method transforming TSK fuzzy systems into fuzzy systems with singleton consequents, and shows its application designing a fuzzy controller with singleton consequents by using the TSK fuzzy system when the behavior of a nonlinear system is described with a singleton fuzzy model by human esper.

  • PDF