• 제목/요약/키워드: TRNSYS program

검색결과 68건 처리시간 0.025초

Energy Saving Potential and Indoor Air Quality Benefits of Multiple Zone Dedicated Outdoor Air System

  • Lee, Soo-Jin;Jeong, Jae-Weon
    • 국제초고층학회논문집
    • /
    • 제8권1호
    • /
    • pp.71-82
    • /
    • 2019
  • The purpose of this study is to evaluate the indoor air quality (IAQ) and energy benefits of a dedicated outdoor air system (DOAS) and compare them with a conventional variable air volume (VAV) system. The DOAS is a decoupled system that supplies only outdoor air, while reducing its consumption using an enthalpy wheel. The VAV system supplies air that is mixed outdoor and transferred indoor. The VAV has the issue of unbalanced ventilation in each room in multiple zones because it supplies mixing air. The DOAS does not have this problem because it supplies only outdoor air. That is, the DOAS is a 100% outdoor air system and the VAV is an air conditioning system. The transient simulations of carbon dioxide concentration and energy consumption were performed using a MATLAB program based on the thermal loads from the model predicted by the TRNSYS 18 program. The results indicated that when the air volume is large, such as in summer, the distribution of air is not appropriate in the VAV system. The DOAS however, supplies the outdoor air stably. Moreover, in terms of annual primary energy consumption, the DOAS consumed approximately 40% less energy than the VAV system.

지역난방수 환수 승온방식의 태양열 지역냉난방 시스템 분석 (A Study on the Design and Analysis of District Solar Heating and Cooling System with Preheating of Returning District Heating Water)

  • 백남춘;신우철;이진국;윤응상;윤석만
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.433-437
    • /
    • 2005
  • This study was carried out the design and analysis of solar thermal system with preheating of returning district heating water for the Chung-ju district heating and cooling system. Two different types of solar collectors are used for this system. TRNSYS simulation program was used for the analysis. As a results, the solar system efficiency is $35.8\%$ for the plate type and $45.1\%$ for the evacuated type solar collector in the case of $50^{\circ}C$ for the returning district heating water temperature. The returning district heating water temperature is on of the very important factors that is influence on the system efficiency. So the effect of the returning district heating water temperature on the system efficiency is analyzed in this study.

  • PDF

LCC분석 기법을 활용한 신재생에너지 최적 설계 방안 연구 (A Study of renewable energy optimal design using the LCC analysis)

  • 송호열;김정욱
    • 에너지공학
    • /
    • 제24권2호
    • /
    • pp.45-50
    • /
    • 2015
  • 온실가스 배출량이 세계 6위인 우리나라는 건물의 운영과 유지 및 관리에 소비되는 에너지로 인한 온실가스 배출량을 줄이고자 공공건축물을 대상으로 신재생에너지 시스템을 통하여 에너지를 생산하도록 하는 공공의무화 제도(RPS)를 시행하고 있다. 이에 본 연구에서는 선행되었던 기존 연구의 동향을 분석하여 에너지원별로 적정 조합 및 적용 비율을 도출하였고, 동적 에너지 프로그램을 이용하여 에너지소비량을 시뮬레이션 하였으며, 산출된 결과를 토대로 초기투자비, 에너지비, 보수교체비, 유지관리비를 산출하였다. 분석결과 지열 100% 조합이 총 비용 2,105,974,344원으로 총 생애주기 비용이 가장 적은 것으로 나타났다.

루프형태의 밀폐형 Thermosyphon의 작동특성과 시스템 모델링에 관한 연구 (A Study on the Operating Characteristics and System Modelling of Closed Loop Type Thermosyphon)

  • 강명철;강용혁;이동규
    • 한국태양에너지학회 논문집
    • /
    • 제22권2호
    • /
    • pp.39-47
    • /
    • 2002
  • The thermosyphon SDHWS and the loop type thermosyphon systems are widely used for domestic hot water system. The loop type thermosyphon is a circulation device for transferring the heat produced at the evaporator to the condenser area in the loop. In this study, the operating characteristics of various working fluids being used have been identified. The working fluids employed in the study were ethanol. water, and a binary mixture of ethanol and water. The volume of working fluid used in this study were 30%, 40%, 50%, 60% and 70% of evaporator volume. It is observed that, in the thermosyphon with low volume of working fluid, such as 30% or 40%, the fluid was dried out. The flow pattern and mechanism of the heat transfer were identified through this study. Flow patterns of the binary mixture working fluid were also investigated, and the patterns were recorded in the camera. The system parameters were calculated using the thermal performance data. Modelling of the system was carried out using PSTAR method and TRNSYS program.

사무소 건물 적용 태양열냉난방시스템의 냉방성능 분석 (Cooling Performance Analysis of Solar Heating and Cooling System in an Office Building)

  • 장재수;고명진;김용식
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.217-222
    • /
    • 2011
  • This study examined the cooling performance of a solar heating and cooling system for an office building using the dynamic simulation program (TRNSYS). This solar heating and cooling system incorporates evacuated tube solar collectors of $204m^2$, storage tank of $8m^3$, 116.2kW auxiliary heater, single-effect $LiBr/H_2O$ absorption chiller of 20RT nominal cooling capacity. It was found that for the representing day showed peak cooling load the annual average collection efficiency of the collector was 32.9% and coefficient of performance of single-effect $LiBr/H_2O$ absorption chiller was 0.68. And the results shows for the cooling season the solar fraction of the solar heating and cooling system was 32.2% and maximal and minimal solar fraction was 63.4% for May 17.9% for July respectively.

  • PDF

태양열 및 외기 열원식 히트펌프 시스템 시뮬레이션 (Simulation of Solar and Ambient-air-assisted Heat Pump)

  • 백남춘;박준언;송병하;이진국;김홍제
    • 태양에너지
    • /
    • 제20권4호
    • /
    • pp.17-24
    • /
    • 2000
  • Thermal performance of a SAAHPS (Solar and Ambient-air-assisted Heat Pump System) located in KIER is simulated with TRNSYS 14.2. The SAAHPS is composed of dual evaorators, each of which is used as a solar fluid heat source and an air fluid heat source. Polynomial coefficients data for the SAAHPS is supplied with Frigosoft, a program widely used for heat pump modeling. In general, collector area and storage volume are 2 key parameters in SAAHPS thermal performance. A parametric study is performed in this study to assess sensitivity of collector area and storage volume in SAAHPS. We concluded that firstly collector area and storage volume are the primary variables in SAAHPS thermal performance, secondly COP of SAAHPS is higher than that of conventional heat pumps. Therefore. collector efficiency can be enhanced swith SAAHPS during a heating season.

  • PDF

바닥복사 난방공간의 효율적인 난방제어방법 (The Effective Heating Control Method of the Radiant Floor Heating System)

  • 조성환;태춘섭
    • 설비공학논문집
    • /
    • 제8권3호
    • /
    • pp.317-329
    • /
    • 1996
  • By describing the floor slab of a radiant heating system as a one dimensional transient heat exchanger problem, a dynamic analysis model to incorperate with TRNSYS program was developed and their results were compared with experimental results. Results showed that the both of TPOC(Two Parameter On-off Control) and TPSC(Two Parameter Switching Control) method using room air temperature and floor surface temperature as the control parameters does not maintain room air and floor surface temperature exactly at the setting temperatures. But TPSC method is a better candidate for the temperature regulations of room air and floor surface temperature than TPOC method which can keep on the upper and lower limit temperature according to outside temeperature and wall structure etc. And better thermal circumstance can be given by TPSC method than On-off and TPOC method and the overheating which can be occured at the radiant floor heating system with on-off heating control will be reduced.

  • PDF

부하예측 외기냉방에 의한 건물에너지 절약에 관한 연구 (A Study on Building Energy Saving using Outdoor Air Cooling by Load Prediction)

  • 김태호;유성연;김명호
    • 설비공학논문집
    • /
    • 제29권2호
    • /
    • pp.43-50
    • /
    • 2017
  • The purpose of this study is to develop a control algorithm for outdoor air cooling based on the prediction of cooling load, and to evaluate the building energy saving using outdoor air cooling. Outdoor air conditions such as temperature, humidity, and solar insolation are predicted using forecasted information provided by the meteorological agency, and the building cooling load is predicted from the obtained outdoor air conditions and building characteristics. The air flow rate induced by outdoor air is determined by considering the predicted cooling loads. To evaluate the energy saving, the benchmark building is modeled and simulated using the TRNSYS program. Energy saving by outdoor air cooling using load prediction is found to be around 10% of the total cooling coil load in all locations of Korea. As the allowable minimum indoor temperature is decreased, the total energy saving is increased and approaches close to that of the conventional enthalpy control.

공동주택 단위난방부하 계산을 위한 단위동법 제안 (Proposal of Unit Building Method for Calculating Unit Heating Load of Apartment Houses)

  • 유호선;정주혁;문정환;이재헌
    • 설비공학논문집
    • /
    • 제19권1호
    • /
    • pp.68-76
    • /
    • 2007
  • As an alternative approach to evaluate the unit heating load for apartment houses, we newly developed and proposed unit building method. The new method, which calculates the heating load of an apartment building as a whole, conceptually corresponds to integral analysis of building heat loss, while the existing unit apartment method to differential analysis. Four typical building models of Korean-style apartment house and two dynamic load calculation programs were selected to validate the present method under realistically imposed conditions. Eight sets of unit heating load calculated respectively by unit building and unit apartment methods showed excellent agreements regardless of building model and simulation program. It is expected that the unit building method can take the place of the unit apartment method due to fewer modeling assumptions as well as less computational efforts. Additional calculations to investigate the effects of various parameters on unit heating load yield good consistencies with known facts, and re-confirm the validity.

수직밀폐형 지중열교환기의 회로 과도해석 상사모델 개발 (Development of an Electric Circuit Transient Analogy Model in a Vertical Closed Loop Ground Heat Exchanger)

  • 김원욱;박홍희;김용찬
    • 설비공학논문집
    • /
    • 제24권4호
    • /
    • pp.306-314
    • /
    • 2012
  • Several numerical or analytical models have been proposed to analyze the thermal response of vertical ground heat exchangers (GHEX). However, most models are valid only after several hours of operation since they neglect the heat capacity of the borehole. Recently, the short time response of the GHEX became important in system simulation to improve efficiency. In this paper, a simple new method to evaluate the short time response of the GHEX by using an analogy model of electric circuit transient analysis was presented. The new transient heat exchanger model adopting the concept of thermal capacitance of the borehole as well as the steady-state thermal resistance showed the transient thermal resistance of the borehole. The model was validated by in-situ thermal response test and then compared with the DST model of the TRNSYS program.