• 제목/요약/키워드: TPH fractionation method

검색결과 3건 처리시간 0.017초

국내 유류오염지역에서의 석유계총탄화수소에 의한 비발암 인체위해성평가 전략 (Human Health Risk Assessment Strategy to Evaluate Non-carcinogenic Adverse Health Effect from Total Petroleum Hydrocarbon at POL-Contaminated Sites in Korea)

  • 박인선;박재우
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제16권4호
    • /
    • pp.10-22
    • /
    • 2011
  • Human health risk assessment for petroleum, oil and lubricant (POL) contaminated sites is challenging as total petroleum hydrocarbon (TPH) is not a single compound but rather a mixture of numerous substances. To address this concern, several TPH fractionation approaches have been proposed and used as an effective management tool for the POL-contaminated sites in many countries. In Korea, there are also recognized needs to establish a reliable and cost-effective human health risk assessment strategy based on the TPH fractionation method. In order to satisfy the social and institutional demand, this study suggested that the comprehensive risk assessment strategy based on a newly modified TPH fractionation method with 10 fractions, the Korean Standard Test Method (KSTM)-based analytical protocol and a stepwise risk assessment framework should be introduced into the domestic contaminated land management system. Under the proposed strategy, POL-contaminated sites can be effectively managed in terms of human health protection, and remedial cost and time can be determined reasonably. In addition, more researches required to increase our understanding of environmental risks and improve the domestic management system were proposed.

국내 석유계총탄화수소 위해성평가 방법 마련을 위한 국외 지침 비교 및 고찰 (Comparison and Consideration on Foreign Guidances for Establishing Risk Assessment Method of Total Petroleum Hydrocarbons in Korea)

  • 윤성미;노회정;김지인;윤정기;임가희;이홍길;조훈제;김인자;황지애;김현구
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제23권6호
    • /
    • pp.54-72
    • /
    • 2018
  • This study reviewed standard operation procedures for fractionation and analytical methods of total petroleum hydrocarbons (TPH) in north america and european countries to aid proper establishment of risk assessment protocols associated with TPH exposure in Korea. In current, the TPH fraction methods established by Massachusetts Department of Environmental Protection (MassDEP) and Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG) are most frequently employed worldwide. Both methods were developed on the basis of direct exposure of TPH from soil, although the method by TPHCWG also took into account the mobility of TPH. Volatile and extractable fractions of petroleum hydrocarbons were analyzed either separately or together. TPH fractionation methods were evaluated based on conservative toxicity values considering the uncertainty of risk assessment in light of current standard protocol for analyzing soil contaminants in Korea, and it was concluded that the method developed by MassDEP is more appropriate.

석유계 총 탄화수소(Total Petroleum Hydrocarbons, TPH) 분획분석법을 이용한 지하수 중 유류오염물질 분포특성 평가 (Evaluation of Distribution Characteristics for Petroleum Hydrocarbon in Groundwater by TPH Fraction Analysis)

  • 김덕현;박선화;최민영;김문수;윤종현;이경미;전상호;송다희;김영;정현미;김현구
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제23권5호
    • /
    • pp.26-36
    • /
    • 2018
  • Total petroleum hydrocarbon (TPH) is a mixture of various oil substances composed of alkane, alkene, cycloalkane, and aromatic hydrocarbons (benzene, toluene, ethylbenzene, xylene, etc.). In this study, we investigated 92 groundwater wells around 36 gas stations to evaluate distribution characteristics of petroleum hydrocarbons. Groundwater in the wells was sampled and monitored twice a year. The fraction analysis method of TPH was developed based on TNRCC 1006. The test results indicated aliphatic and aromatic fractions accounted for 28.6 and 73.8%, respectively. The detection frequencies of TPH in the monitoring wells ranged in 21.6 - 24.2%. The average concentration of TPH was 0.11 mg/L with the concentration range of 0.25~0.99 mg/L. In the result of TPH fraction analysis, in aliphatic fractions were 19% (C6-C8 : 0.2%, C8-C10 : 0.4%, C10-C12 : 0.4%, C12-C16 : 0.5%, C16-C22 : 1.0%, C22-C36 : 16.6%), and aromatic fractions were 81% (C6-C8 : 1.1%, C8-C10 : 0%, C10-C12 : 2.9%, C12-C16 : 0.3%, C16-C22 : 4%, C22-C36 : 66.8%). Fractions of C22-C36 were detected in about 83% of the monitoring wells, suggesting non-degradable characteristics of hydrocarbons with high carbon content.