• 제목/요약/키워드: TORSION

검색결과 1,213건 처리시간 0.033초

일체형 차축의 진동 해석 모델 개발 (Vibration Analysis Model Development of the Solid Axles)

  • 전갑진;최성진;박태원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.147-150
    • /
    • 2005
  • The torsion beam axle type is widely used in the rear suspension for small passenger car because of low cost, good performance and etc. The FE and dynamic analysis using the computer are very helpful for the efficiency of the torsion beam design. First of all, the reliability on the computational model must be verified for the analysis. In this study, The FE model of the torsion beam was verified according to comparison with he test data. And after making the flexible body using the FE model, the dynamic characteristic of the tubular type torsion beam axles was compared with that of the V-beam type.

  • PDF

Delamination analysis of inhomogeneous viscoelastic beam of rectangular section subjected to torsion

  • Victor I. Rizov
    • Coupled systems mechanics
    • /
    • 제12권1호
    • /
    • pp.69-81
    • /
    • 2023
  • This paper considers a delamination analysis of a statically undetermined inhomogeneous beam structure of rectangular section with viscoelastic behavior under torsion. The beam is built in at its two ends. The beam has two longitudinal inhomogeneous layers with a delamination crack between them. A notch is made in the upper crack arm. The external torsion moment applied on the beam is a function of time. Under these conditions, the beam has one degree of indeterminacy. In order to derive the strain energy release rate, first, the static indeterminacy is resolved. Then the strain energy release rate is obtained by analyzing the balance of the energy with considering the viscoelastic behavior. The strain energy release rate is found also by analyzing the compliance of the beam for checkup. Solution of the strain energy release rate in a beam without a notch in the upper crack arm is derived too. In this case, the beam has two degrees of static indeterminacy (the torsion moment in the upper crack arm is treated as an additional internal redundant unknown). A parametric investigation of the strain energy release rate is carried-out.

INJECTIVE MODULES OVER ω-NOETHERIAN RINGS, II

  • Zhang, Jun;Wang, Fanggui;Kim, Hwankoo
    • 대한수학회지
    • /
    • 제50권5호
    • /
    • pp.1051-1066
    • /
    • 2013
  • By utilizing known characterizations of ${\omega}$-Noetherian rings in terms of injective modules, we give more characterizations of ${\omega}$-Noetherian rings. More precisely, we show that a commutative ring R is ${\omega}$-Noetherian if and only if the direct limit of GV -torsion-free injective R-modules is injective; if and only if every R-module has a GV -torsion-free injective (pre)cover; if and only if the direct sum of injective envelopes of ${\omega}$-simple R-modules is injective; if and only if the essential extension of the direct sum of GV -torsion-free injective R-modules is the direct sum of GV -torsion-free injective R-modules; if and only if every $\mathfrak{F}_{w,f}(R)$-injective ${\omega}$-module is injective; if and only if every GV-torsion-free R-module admits an $i$-decomposition.

Estimation of elastic seismic demands in TU structures using interactive relations between shear and torsion

  • Abegaz, Ruth A.;Lee, Han Seon
    • Earthquakes and Structures
    • /
    • 제19권1호
    • /
    • pp.59-77
    • /
    • 2020
  • The code static eccentricity model for elastic torsional design of structures has two critical shortcomings: (1) the negation of the inertial torsional moment at the center of mass (CM), particularly for torsionally-unbalanced (TU) building structures, and (2) the confusion caused by the discrepancy in the definition of the design eccentricity in codes and the resistance eccentricity commonly used by engineers such as in FEMA454. To overcome these shortcomings, using the resistance eccentricity model that can accommodate the inertial torsional moment at the CM, interactive relations between shear and torsion are proposed as follows: (1) elastic responses of structures at instants of peak edge-frame drifts are given as functions of resistance eccentricity, and (2) elastic hysteretic relationships between shear and torsion in forces and deformations are bounded by ellipsoids constructed using two adjacent dominant modes. Comparison of demands estimated using these two interactive relations with those from shake-table tests of two TU building structures (a 1:5-scale five-story reinforced concrete (RC) building model and a 1:12-scale 17-story RC building model) under the service level earthquake (SLE) show that these relations match experimental results of models reasonably well. Concepts proposed in this study enable engineers to not only visualize the overall picture of torsional behavior including the relationship between shear and torsion with the range of forces and deformations, but also pinpoint easily the information about critical responses of structures such as the maximum edge-frame drifts and the corresponding shear force and torsion moment with the eccentricity.

개 비장염전의 진단영상 2례 (Diagnostic imaging of isolated splenic torsion in two dogs)

  • 최지혜;김현욱;김진경;장재영;김준영;윤정희
    • 대한수의학회지
    • /
    • 제47권3호
    • /
    • pp.349-356
    • /
    • 2007
  • Isolated splenic torsion is a rare disease, which is usually produced in deep-chest large breed dogs. A five-year old Pitbull terrier and a four-year old Yorkshire terrier were diagnosed as isolated splenic torsion with chronic form. Leukocytosis, anemia and elevated hepatic enzyme level were found in blood test and a large amount of ascites was observed. Abdominal radiography revealed splenomegaly and ascites and ultrasonography showed diffuse hypoechoic change of spleen in case 1 and hyperechoic change of spleen with focal hypoechoic regions in case 2, thromboembolism of splenic vein and abnormal direction of spleen. To identify the underlying disease of isolated splenic torsion, the histopathologic examination of excised spleen is essential and splenic neoplasia was found in case 2. Chronic isolated splenic torsion shows nonspecific clinical signs and laboratory results. Through diagnostic procedure, particularly ultrasonography, prompt diagnosis may be achieved and improve the prognosis of the patient.

풍력발전단지 집합 시스템 사고 시 DFIG의 Shaft Torsion 분석 (Analysis of shaft torsion of a DFIG for a wind farm collector system fault)

  • 윤의상;이진식;이영귀;정태영;강용철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.93-94
    • /
    • 2011
  • This paper analyzes the shaft torsion of a doubly-fed induction generator (DFIG) for a wind farm collector system fault. When a fault occurs, the active power of the DFIG cannot be transmitted to the grid and thus accelerates the rotation of both the blade and the rotor. Due to the different inertia of these, the angle of deviation fluctuates and the shaft torsion is occurred. This becomes much severe when the rotational speed of the blade exceeds a threshold, which activating the pitch control to reduce the mechanical power. The torque, which can be sixty times larger than that in the steady state, may destroy the shaft. The shaft torsion phenomena are simulated using the EMTP-RV simulator. The results indicate that when a wind farm collector system fault occurs, a severe shaft torsion is occurred due to the activation of the pitch control.

  • PDF

Shake-table responses of a low-rise RC building model having irregularities at first story

  • Lee, Han Seon;Jung, Dong Wook;Lee, Kyung Bo;Kim, Hee Cheul;Lee, Kihak
    • Structural Engineering and Mechanics
    • /
    • 제40권4호
    • /
    • pp.517-539
    • /
    • 2011
  • This paper presents the seismic responses of a 1:5-scale five-story reinforced concrete building model, which represents a residential apartment building that has a high irregularity of weak story, soft story, and torsion simultaneously at the ground story. The model was subjected to a series of uni- and bi-directional earthquake simulation tests. Analysis of the test results leads to the following conclusions: (1) The model survived the table excitations simulating the design earthquake with the PGA of 0.187 g without any significant damages, though it was not designed against earthquakes; (2) The fundamental mode was the torsion mode. The second and third orthogonal translational modes acted independently while the torsion mode showed a strong correlation with the predominant translational mode; (3) After a significant excursion into inelastic behavior, this correlation disappeared and the maximum torsion and torsion deformation remained almost constant regardless of the intensity of the two orthogonal excitations; And, (4) the lateral resistance and stiffness of the critical columns and wall increased or decreased significantly with the large variation of acting axial forces caused by the high bi-directional overturning moments and rocking phenomena under the bi-directional excitations.

Behavior of circular concrete-filled steel tubular columns under pure torsion

  • Ding, Fa-xing;Fu, Qiang;Wen, Bing;Zhou, Qi-shi;Liu, Xue-mei
    • Steel and Composite Structures
    • /
    • 제26권4호
    • /
    • pp.501-511
    • /
    • 2018
  • Concrete-filled steel tubular (CFT) columns are commonly used in engineering structures and always subjected to torsion in practice. This paper is thus devoted to investigate the mechanical behavior of circular CFT columns under pure torsion.3D finite element models based on reasonable material constitutive relation were established for analyzing the load-strain ($T-{\gamma}$) curves of circular CFT columns under pure torsion. The numerical simulation indicated that local bulking of the steel tube in CFT columns was prevented and the shear strength and ductility of the core concrete were significantly improved due to the confinement effect between the steel tube and the core concrete. Based on the results, formulas to predict the torsional ultimate bearing capacity of circular CFT columns were proposed with satisfactory correspondence with experimental results. Besides, formulas of composite shear stiffness and the overall process of the $T-{\gamma}$ relation of circular CFT columns under pure torsion were proposed.

Hysteresis modelling of reinforced concrete columns under pure cyclic torsional loading

  • Mondal, Tarutal Ghosh;Kothamuthyala, Sriharsha R.;Prakash, S. Suriya
    • Structural Engineering and Mechanics
    • /
    • 제64권1호
    • /
    • pp.11-21
    • /
    • 2017
  • It has been observed in the past that, the reinforced concrete (RC) bridge columns are very often subjected to torsional moment in addition to flexure and shear during seismic vibration. Ignoring torsion in the design can trigger unexpected shear failure of the columns (Farhey et al. 1993). Performance based seismic design is a popular design philosophy which calls for accurate prediction of the hysteresis behavior of structural elements to ensure safe and economical design under earthquake loading. However, very few investigations in the past focused on the development of analytical models to accurately predict the response of RC members under cyclic torsion. Previously developed hysteresis models are not readily applicable for torsional loading owing to significant pinching and stiffness degradation associated with torsion (Wang et al. 2014). The present study proposes an improved polygonal hysteresis model which can accurately predict the hysteretic behavior of RC circular and square columns under torsion. The primary curve is obtained from mechanics based softened truss model for torsion. The proposed model is validated with test data of two circular and two square columns. A good correlation is observed between the predicted and measured torque-twist behavior and dissipated energy.

Lung torsion after tracheoesophageal fistula repair in an infant

  • Yang, Eun Mi;Song, Eun Song;Jang, Hae In;Jeong, In Seok;Choi, Young Youn
    • Clinical and Experimental Pediatrics
    • /
    • 제56권4호
    • /
    • pp.186-190
    • /
    • 2013
  • Lung torsion is a very rare event that has been reported in only 9 cases in the pediatric literature but has not yet been reported in Korean infants. We present a case of lung torsion after tracheoesophageal fistula repair in an infant. Bloody secretion from the endotracheal tube and chest radiographs and computed tomographic scan results indicated lung torsion. Emergency exploration indicated $180^{\circ}$ torsion of the right upper lobe (RUL) and right middle lobe (RML). After detorsion of both lobes, some improvement in the RUL color was observed, but the color change in the RML could not be determined. Although viability of the RML could not be proven, pexy was performed for both the lobes. Despite reoperation, clinical signs and symptoms did not improve. The bronchoscopy revealed a patent airway in the RUL but not in the RML. Finally, the RML was surgically removed. The patient was discharged on the 42nd day after birth.