• 제목/요약/키워드: TOR signaling pathway

검색결과 104건 처리시간 0.031초

Ganglioside GT1b increases hyaluronic acid synthase 2 via PI3K activation with TLR2 dependence in orbital fibroblasts from thyroid eye disease patients

  • Yoo, Hyun Kyu;Park, Hyunju;Hwang, Hye Suk;Kim, Hee Ja;Choi, Youn-Hee;Kook, Koung Hoon
    • BMB Reports
    • /
    • 제54권2호
    • /
    • pp.136-141
    • /
    • 2021
  • Thyroid eye disease (TED) is a complex autoimmune disease with a spectrum of signs. we previously reported that trisialoganglioside (GT)1b is significantly overexpressed in the orbital tissue of TED patients, and that exogenous GT1b strongly induced HA synthesis in orbital fibroblasts. However, the signaling pathway in GT1b-induced hyaluronic acid synthase (HAS) expression in orbital fibroblasts from TED patients have rarely been investigated. Here, we demonstrated that GT1b induced phosphorylation of Akt/mTOR in a dose-dependent manner in orbital fibroblasts from TED patients. Both co-treatment with a specific inhibitor for PI3K and siRNA knockdown of TLR2 attenuated GT1b-induced Akt phosphorylation. GT1b significantly induced HAS2 expression at both the transcriptional and translational level, which was suppressed by specific inhibitors of PI3K or Akt/mTOR, and by siRNA knockdown of TLR2. In conclusion, GT1b induced HAS2 in orbital fibroblasts from TED patients via activation of the PI3K-related signaling pathway, dependent on TLR2.

Expression and Clinical Significance of mTOR in Surgically Resected Non-small Cell Lung Cancer Tissues: a Case Control Study

  • Liu, Zhe;Wang, Liang;Zhang, Li-Na;Wang, Yue;Yue, Wen-Tao;Li, Qi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권12호
    • /
    • pp.6139-6144
    • /
    • 2012
  • Aims: Mammalian target of rapamycin (mTOR) is master regulator of the PI3K/Akt/mTOR pathway and plays an important role in NSCLCs. Here we characterized mRNA and protein expression levels of mTOR and its functional associated molecules including PTEN, IGF-1R and 4EBP1 in surgically resected NSCLCs. Methods: Fifty-four patients with NSCLCs who underwent pulmonary resection were included in current study. mRNA levels of mTOR, PTEN, IGF-1R, and 4EBP1 were evaluated by RT-PCR and protein expression of mTOR, PTEN, and IGF-1R by immunohistochemistry (IHC). Association of expression of the relevant molecules with clinical characteristics, as well as correlations between mTOR and PTEN, 4EBP1 and IGF-1R were also assessed. Results: The results of RT-PCR showed that in NSCLCs, the expression level of mTOR increased, while PTEN, 4EBP1 and IGF-1R decreased. Statistical analysis indicated high IGF-1R expression was correlated with advanced clinical stage (stage III) and PTEN expression was reversely associated with tumor size (P=0.16). The results of IHC showed mTOR positive staining in 51.8% of cases, while IGF-1R positive staining was found in 83.3% and loss of PTEN in 46.3%. Protein expression of mTOR was correlated with its regulators, PTEN and IGF-1R, to some extent. Conclusions: Abnormal activation of mTOR signaling, high expression of IGF-1R, and loss of PTEN were observed in resected NSCLC specimens. The poor expression agreement of mTOR with its regulators, PTEN, and IGF-1R, implied that combination strategy of mTOR inhibitors with other targets hold significant potential for NSCLC treatment.

A Mixture of Morus alba and Angelica keiskei Leaf Extracts Improves Muscle Atrophy by Activating the PI3K/Akt/mTOR Signaling Pathway and Inhibiting FoxO3a In Vitro and In Vivo

  • Hyun Hwangbo;Min Yeong Kim;Seon Yeong Ji;Da Hye Kim;Beom Su Park;Seong Un Jeong;Jae Hyun Yoon;Tae Hee Kim;Gi-Young Kim;Yung Hyun Choi
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권12호
    • /
    • pp.1635-1647
    • /
    • 2023
  • Muscle atrophy, which is defined as a decrease in muscle mass and strength, is caused by an imbalance between the anabolism and catabolism of muscle proteins. Thus, modulating the homeostasis between muscle protein synthesis and degradation represents an efficient treatment approach for this condition. In the present study, the protective effects against muscle atrophy of ethanol extracts of Morus alba L. (MA) and Angelica keiskei Koidz. (AK) leaves and their mixtures (MIX) were evaluated in vitro and in vivo. Our results showed that MIX increased 5-aminoimidazole-4-carboxamide ribonucleotide-induced C2C12 myotube thinning, and enhanced soleus and gastrocnemius muscle thickness compared to each extract alone in dexamethasone-induced muscle atrophy Sprague Dawley rats. In addition, although MA and AK substantially improved grip strength and histological changes for dexamethasone-induced muscle atrophy in vivo, the efficacy was superior in the MIX-treated group. Moreover, MIX further increased the expression levels of myogenic factors (MyoD and myogenin) and decreased the expression levels of E3 ubiquitin ligases (atrogin-1 and muscle-specific RING finger protein-1) in vitro and in vivo compared to the MA- and AK-alone treatment groups. Furthermore, MIX increased the levels of phosphorylated phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), and mammalian target of rapamycin (mTOR) that were reduced by dexamethasone, and downregulated the expression of forkhead box O3 (FoxO3a) induced by dexamethasone. These results suggest that MIX has a protective effect against muscle atrophy by enhancing muscle protein anabolism through the activation of the PI3K/Akt/mTOR signaling pathway and attenuating catabolism through the inhibition of FoxO3a.

Changes of Sexual Behaviors in Rapamycin-injected Cichlid Fish Astatotilapia burtoni Males

  • Kim, Tae Ha;Sohn, Young Chang
    • 한국발생생물학회지:발생과생식
    • /
    • 제20권3호
    • /
    • pp.267-274
    • /
    • 2016
  • Cichlid fish species exhibit characteristic sexual behaviors according to not only reproductive stages but also social status. In a reproductive season, Astatotilapia burtoni males compete for females and a small number of dominant winners finally obtain the chance of spermiation. In addition to the characteristic behaviors, the dominant males have relatively bigger gonadotropin-releasing hormone 1 (GnRH1) neurons in the preoptic area (POA) of brain compared to those of subordinate males. Although the stimulatory effect of GnRH1 in vertebrate reproduction is well established, little is known about the triggering signal pathway to control GnRH1 neurons and GnRH1-mediated sexual behavior. In the present study, we evaluated the potential effect of TOR inhibitor rapamycin in relation to the cichlid male behaviors and GnRH1 neuron. After 14 h and 26 h of intraventricular injection of rapamycin, behavior patterns of chasing and courtship display did not show significant changes between rapamycin- and DMSO-injected males. Behaviors of spawning site entry increased in rapamycin-injected fish at 26 h post-injection than at 14 h post-injection significantly (P<0.05). Meanwhile, there was a tendency that GnRH1 neurons' soma size in the POA shrank by rapamycin injection, whereas the testes did not show notable changes. Taken together, these results suggest the possible role of TOR signal on GnRH1-mediated sexual behavior in cichlid dominant males, although further biological characterization of the TOR signaling pathway will be required to clarify this matter.

Oleanolic acid induced autophagic cell death in hepatocellular carcinoma cells via PI3K/Akt/mTOR and ROS-dependent pathway

  • Shi, Yang;Song, Qingwei;Hu, Dianhe;Zhuang, Xiaohu;Yu, Shengcai;Teng, Dacai
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권3호
    • /
    • pp.237-243
    • /
    • 2016
  • Oleanolic acid (OA) has a wide variety of bioactivities such as hepatoprotective, anti-inflammatory and anti-cancer activity and is used for medicinal purposes in many Asian countries. In the present study, the effect of OA on induction of autophagy in human hepatocellular carcinoma HepG2 and SMC7721 cells and the related mechanisms were investigated. MTT assay showed that OA significantly inhibited HepG2 and SMC7721 cells growth. OA treatment enhanced formation of autophagic vacuoles as revealed by monodansylcadaverine (MDC) staining. At the same time, increasing punctuate distribution of microtubule-associated protein 1 light chain 3 (LC3) and an increasing ratio of LC3-II to LC3-I were also triggered by OA incubation. In addition, OA-induced cell death was significantly inhibited by autophagy inhibitors 3-methyladenine (3-MA) and chloroquine (CQ) pretreatment. And we found out that OA can suppress the PI3K/Akt1/mTOR signaling pathway. Furthermore, our data suggested that OA-triggered autophagy was ROS-dependent as demonstrated by elevated cellular ROS levels by OA treatment. When ROS was cleared by N-acetylcysteine (NAC), OA-induced LC3-II convertsion and cell death were all reversed. Taken together, our results suggest that OA exerts anticancer effect via autophagic cell death in hepatocellular carcinoma.

Destabilization of TNF-α mRNA by Rapamycin

  • Park, Jong-Woo;Jeon, Ye-Ji;Lee, Jae-Cheol;Ahn, So-Ra;Ha, Shin-Won;Bang, So-Young;Park, Eun-Kyung;Yi, Sang-Ah;Lee, Min-Gyu;Han, Jeung-Whan
    • Biomolecules & Therapeutics
    • /
    • 제20권1호
    • /
    • pp.43-49
    • /
    • 2012
  • Stimulation of mast cells through the high affinity IgE receptor (Fc${\varepsilon}$RI) induces degranulation, lipid mediator release, and cytokine secretion leading to allergic reactions. Although various signaling pathways have been characterized to be involved in the Fc${\varepsilon}$RI-mediated responses, little is known about the precious mechanism for the expression of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) in mast cells. Here, we report that rapamycin, a specific inhibitor of mammalian target of rapamycin (mTOR), reduces the expression of TNF-${\alpha}$ in rat basophilic leukemia (RBL-2H3) cells. IgE or specific antigen stimulation of RBL-2H3 cells increases the expression of TNF-${\alpha}$ and activates various signaling molecules including S6K1, Akt and p38 MAPK. Rapamycin specifically inhibits antigeninduced TNF-${\alpha}$ mRNA level, while other kinase inhibitors have no effect on TNF-${\alpha}$ mRNA level. These data indicate that mTOR signaling pathway is the main regulation mechanism for antigen-induced TNF-${\alpha}$ expression. TNF-${\alpha}$ mRNA stability analysis using reporter construct containing TNF-${\alpha}$ adenylate/uridylate-rich elements (AREs) shows that rapamycin destabilizes TNF-${\alpha}$ mRNA via regulating the AU-rich element of TNF-${\alpha}$ mRNA. The antigen-induced activation of S6K1 is inhibited by specific kinase inhibitors including mTOR, PI3K, PKC and $Ca^{2+}$chelator inhibitor, while TNF-${\alpha}$ mRNA level is reduced only by rapamycin treatment. These data suggest that the effects of rapamycin on the expression of TNF-${\alpha}$ mRNA are not mediated by S6K1 but regulated by mTOR. Taken together, our results reveal that mTOR signaling pathway is a novel regulation mechanism for antigen-induced TNF-${\alpha}$ expression in RBL-2H3 cells.

Antitumor effects of valdecoxib on hypopharyngeal squamous carcinoma cells

  • Trang, Nguyen Thi Kieu;Yoo, Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권6호
    • /
    • pp.439-446
    • /
    • 2022
  • The antitumoral effects of valdecoxib (Val), an United States Food and Drug Administration-approved anti-inflammatory drug that was withdrawn due to the side effects of increased risk of cardiovascular adverse events, were investigated in hypopharyngeal squamous cell carcinoma cells by performing a cell viability assay, transwell assay, immunofluorescence imaging, and Western blotting. Val markedly inhibited cell viability with an IC50 of 67.3 µM after 48 h of treatment, and also downregulated cell cycle proteins such as Cdks and their regulatory cyclin units. Cell migration and invasion were severely suppressed by inhibiting integrin α4/FAK expression. In addition, Val activated the cell cycle checkpoint CHK2 in response to excessive DNA damage, which led to the activation of caspase-3/9 and induced caspase-dependent apoptosis. Furthermore, the signaling cascades of the PI3K/AKT/mTOR and mitogen-activated protein kinase pathways were significantly inhibited by Val treatment. Taken together, our results indicate that Val can be used for the treatment of hypopharyngeal squamous cell carcinoma.

Caveolin-1 in Breast Cancer: Single Molecule Regulation of Multiple Key Signaling Pathways

  • Anwar, Sumadi Lukman;Wahyono, Artanto;Aryandono, Teguh;Haryono, Samuel J
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권16호
    • /
    • pp.6803-6812
    • /
    • 2015
  • Caveolin-1 is a 22-kD trans-membrane protein enriched in particular plasma membrane invaginations known as caveolae. Cav-1 expression is often dysregulated in human breast cancers, being commonly upregulated in cancer cells and downregulated in stromal cells. As an intracellular scaffolding protein, Cav-1, is involved in several vital biological regulations including endocytosis, transcytosis, vesicular transport, and signaling pathways. Several pathways are modulated by Cav-1 including estrogen receptor, EGFR, Her2/neu, $TGF{\beta}$, and mTOR and represent as major drivers in mammary carcinogenesis. Expression and role of Cav-1 in breast carcinogenesis is highly variable depending on the stage of tumor development as well as context of the cell. However, recent data have shown that downregulation of Cav-1 expression in stromal breast tumors is associated with frequent relapse, resistance to therapy, and poor outcome. Modification of Cav-1 expression for translational cancer therapy is particularly challenging since numerous signaling pathways might be affected. This review focuses on present understanding of Cav-1 in breast carcinogenesis and its potential role as a new biomarker for predicting therapeutic response and prognosis as well as new target for therapeutic manipulation.

m6A in the Signal Transduction Network

  • Jang, Ki-Hong;Heras, Chloe R.;Lee, Gina
    • Molecules and Cells
    • /
    • 제45권7호
    • /
    • pp.435-443
    • /
    • 2022
  • In response to environmental changes, signaling pathways rewire gene expression programs through transcription factors. Epigenetic modification of the transcribed RNA can be another layer of gene expression regulation. N6-adenosine methylation (m6A) is one of the most common modifications on mRNA. It is a reversible chemical mark catalyzed by the enzymes that deposit and remove methyl groups. m6A recruits effector proteins that determine the fate of mRNAs through changes in splicing, cellular localization, stability, and translation efficiency. Emerging evidence shows that key signal transduction pathways including TGFβ (transforming growth factor-β), ERK (extracellular signal-regulated kinase), and mTORC1 (mechanistic target of rapamycin complex 1) regulate downstream gene expression through m6A processing. Conversely, m6A can modulate the activity of signal transduction networks via m6A modification of signaling pathway genes or by acting as a ligand for receptors. In this review, we discuss the current understanding of the crosstalk between m6A and signaling pathways and its implication for biological systems.

Effect of all-trans retinoic acid on casein and fatty acid synthesis in MAC-T cells

  • Liao, Xian-Dong;Zhou, Chang-Hai;Zhang, Jing;Shen, Jing-Lin;Wang, Ya-Jing;Jin, Yong-Cheng;Li, Sheng-Li
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권6호
    • /
    • pp.1012-1022
    • /
    • 2020
  • Objective: Caseins and fatty acids of milk are synthesized and secreted by the epithelial cells of the mammary gland. All-trans retinoic acid (ATRA), an active metabolite of vitamin A, has been shown to promote mammary development. This study was conducted to determine the effect of ATRA on casein synthesis and fatty acid composition in MAC-T cells. Methods: MAC-T cells were allowed to differentiate for 4 d, treated with ATRA (0, 1.0, 1.5, and 2.0 μM), and incubated for 3 d. We analyzed the fatty acid composition, the mRNA expression of casein and fatty acid synthesis-related genes, and the phosphorylation of casein synthesis-related proteins of MAC-T cells by gas chromatography, quantitative polymerase chain reaction, and western blotting, respectively. Results: In MAC-T cells, ATRA increased the mRNA levels of αS1-casein and β-casein, janus kinase 2 (JAK2) and E74-like factor 5 of the signal transducer and activator of transcription 5 β (STAT5-β) pathway, ribosomal protein S6 kinase beta-1 (S6K1) and eukaryotic translation initiation factor 4E binding protein 1 of the mammalian target of rapamycin (mTOR) pathway, inhibited the mRNA expression of phosphoinositide 3-kinase and eukaryotic initiation factor 4E of the mTOR pathway, and promoted the phosphorylation of STAT5-β and S6K1 proteins. Additionally, ATRA increased the de novo synthesis of fatty acids, reduced the content of long-chain fatty acids, the ratio of monounsaturated fatty acids to saturated fatty acids (SFA), the ratio of polyunsaturated fatty acids (PUFA) to SFA, and the ratio of ω-6 to ω-3 PUFA. The mRNA levels of acetyl-CoA carboxylase 1, fatty acid synthase, lipoprotein lipase, stearoyl-CoA desaturase, peroxisome proliferator-activated receptor gamma, and sterol regulatory element-binding protein 1 (SREBP1) were enhanced by ATRA. Conclusion: ATRA promotes the synthesis of casein by regulating JAK2/STAT5 pathway and downstream mTOR signaling pathway, and it improves the fatty acid composition of MAC-T cells by regulating SREBP1-related genes.