• Title/Summary/Keyword: TOR signaling pathway

Search Result 108, Processing Time 0.023 seconds

Rapamycin-Induced Abundance Changes in the Proteome of Budding Yeast

  • Shin, Chun-Shik;Chang, Yeon-Ji;Lee, Hun-Goo;Huh, Won-Ki
    • Genomics & Informatics
    • /
    • v.7 no.4
    • /
    • pp.203-207
    • /
    • 2009
  • The target of rapamycin (TOR) signaling pathway conserved from yeast to human plays critical roles in regulation of eukaryotic cell growth. It has been shown that TOR pathway is involved in several cellular processes, including ribosome biogenesis, nutrient response, autophagy and aging. However, due to the functional diversity of TOR pathway, we do not know yet some key effectors of the pathway. To find unknown effectors of TOR signaling pathway, we took advantage of a green fluorescent protein (GFP)-tagged collection of budding yeast Saccharomyces cerevisiae. We analyzed protein abundance changes by measuring the GFP fluorescence intensity of 4156 GFP-tagged yeast strains under inhibition of TOR pathway. Our proteomic analysis argues that 83 proteins are decreased whereas 32 proteins are increased by treatment of rapamycin, a specific inhibitor of TOR complex 1 (TORC1). We found that, among the 115 proteins that show significant changes in protein abundance under rapamycin treatment, 37 proteins also show expression changes in the mRNA levels by more than 2-fold under the same condition. We suggest that the 115 proteins indentified in this study may be directly or indirectly involved in TOR signaling and can serve as candidates for further investigation of the effectors of TOR pathway.

Inhibitors of AKT Signaling Pathway and their Application

  • WONG, Chin Piow
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.33-33
    • /
    • 2019
  • The AKT signaling pathway is a highly regulated cell signaling system that forms a network with other cell signaling pathways. Hence, the AKT signaling pathway mediates several important cellular functions that include cell survival, proliferation, cell migration, and et cetera. Irregularities that led overactive AKT signaling have been linked to many diseases such as cancer and metabolic-associated diseases. Hence, modulating the overactive AKT signaling pathway via inhibitor is a tantalizing prospect for treatment of cancer and metabolic-associated diseases. Two inhibitors of the AKT signaling pathway will be presented in this symposium: 1) Bisleuconothine A (BisA), a bisindole alkaloid that inhibit autophagy and 2) Ceramicine B (CerB), a limonoid that inhibit adipogenesis. The first topic is on a bisindole alkaloid, BisA and its mechanism in inducing autophagosome formation in lung cancer cell line, A549.(1) Since most autophagy inducing agents generally induce apoptosis, we found that BisA does not induce apoptosis even in high dose. BisA up-regulation of LC3 lipidation is achieved through mTOR inactivation. The phosphorylation of PRAS40, a mTOR repressor was suppressed by BisA. This observation suggested that BisA inactivates mTOR via suppression of PRAS40 phosphorylation. Interestingly, the phosphorylation of AKT, an upstream regulator of PRAS40 phosphorylation was also down-regulated by BisA. These findings suggested that Bis-A induces autophagosomes formation by interfering with the AKT-mTOR signaling pathway. The second topic is on CerB and its mechanism in inhibiting adipogenesis in preadipocytes cell line, MC3T3-G2/PA6.(2,3) CerB inhibits the phosphorylation of protein kinase B (AKT) at the Thr308 position but not the Ser473. Consequently, the phosphorylation of FOXO3 which is located downstream of AKT is also inhibited. Considering that FOXO3 is an important regulator of PPARγ which is a key factor in adipogenesis, CerB may inhibit adipogenesis via the AKT-FOXO3 signaling pathway. Taken together, both BisA and CerB highlighted the potential of AKT signaling pathway modulation as an approach to induce autophagy and inhibit the formation of fat cells, respectively.

  • PDF

Rapamycin-resistant and torin-sensitive mTOR signaling promotes the survival and proliferation of leukemic cells

  • Park, Seohyun;Sim, Hyunsub;Lee, Keunwook
    • BMB Reports
    • /
    • v.49 no.1
    • /
    • pp.63-68
    • /
    • 2016
  • The serine/threonine kinase mTOR is essential for the phosphoinositide 3-kinases (PI3K) signaling pathway, and regulates the development and function of immune cells. Aberrant activation of mTOR signaling pathway is associated with many cancers including leukemia. Here, we report the contributions of mTOR signaling to growth of human leukemic cell lines and mouse T-cell acute leukemia (T-ALL) cells. Torin, an ATP-competitive mTOR inhibitor, was found to have both cytotoxic and cytostatic effects on U-937, THP-1, and RPMI-8226 cells, but not on Jurkat or K-562 cells. All cells were relatively resistant to rapamycin even with suppressed activity of mTOR complex 1. Growth of T-ALL cells induced by Notch1 was profoundly affected by torin partially due to increased expression of Bcl2l11 and Bbc3. Of note, activation of Akt or knockdown of FoxO1 mitigated the effect of mTOR inhibition on T-ALL cells. Our data provide insight on the effect of mTOR inhibitors on the survival and proliferation of leukemic cells, thus further improving our understanding on cell-context-dependent impacts of mTOR signaling. [BMB Reports 2016; 49(1): 63-68]

Mechanisms of amino acid sensing in mTOR signaling pathway

  • Kim, Eun-Jung
    • Nutrition Research and Practice
    • /
    • v.3 no.1
    • /
    • pp.64-71
    • /
    • 2009
  • Amino acids are fundamental nutrients for protein synthesis and cell growth (increase in cell size). Recently, many compelling evidences have shown that the level of amino acids is sensed by extra- or intra-cellular amino acids sensor(s) and regulates protein synthesis/degradation. Mammalian target of rapamycin complex 1 (mTORC1) is placed in a central position in cell growth regulation and dysregulation of mTOR signaling pathway has been implicated in many serious human diseases including cancer, diabetes, and tissue hypertrophy. Although amino acids are the most potent activator of mTORC1, how amino acids activate mTOR signaling pathway is still largely unknown. This is partly because of the diversity of amino acids themselves including structure and metabolism. In this review, current proposed amino acid sensing mechanisms to regulate mTORC1 and the evidences pro/against the proposed models are discussed.

Genomewide Profiling of Rapamycin Sensitivity in Saccharomyces cerevisiae on Synthetic Medium

  • Chang, Yeon-Ji;Shin, Chun-Shik;Han, Dong-Hun;Kim, Ji-Yun;Kim, Kang-In;Kwon, Yong-Min;Huh, Won-Ki
    • Genomics & Informatics
    • /
    • v.8 no.4
    • /
    • pp.177-184
    • /
    • 2010
  • The target of rapamycin (TOR) signaling pathway is a conserved pathway that regulates eukaryotic cell growth in response to environmental cues. Chemical genomic approaches that profile rapamycin sensitivity of yeast deletion strains have given insights into the function of TOR signaling pathway. In the present study, we analyzed the rapamycin sensitivity of yeast deletion library strains on synthetic medium. As a result, we identified 130 strains that are hypersensitive or resistant to rapamycin compared with wild-type cells. Among them, 36 genes are newly identified to be related to rapamycin sensitivity. Moreover, we found 16 strains that show alteration in rapamycin sensitivity between complex and synthetic media. We suggest that these genes may be involved in part of TOR signaling activities that is differentially regulated by media composition.

Mechanistic Target of Rapamycin Pathway in Epileptic Disorders

  • Kim, Jang Keun;Lee, Jeong Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.3
    • /
    • pp.272-287
    • /
    • 2019
  • The mechanistic target of rapamycin (mTOR) pathway coordinates the metabolic activity of eukaryotic cells through environmental signals, including nutrients, energy, growth factors, and oxygen. In the nervous system, the mTOR pathway regulates fundamental biological processes associated with neural development and neurodegeneration. Intriguingly, genes that constitute the mTOR pathway have been found to be germline and somatic mutation from patients with various epileptic disorders. Hyperactivation of the mTOR pathway due to said mutations has garnered increasing attention as culprits of these conditions : somatic mutations, in particular, in epileptic foci have recently been identified as a major genetic cause of intractable focal epilepsy, such as focal cortical dysplasia. Meanwhile, epilepsy models with aberrant activation of the mTOR pathway have helped elucidate the role of the mTOR pathway in epileptogenesis, and evidence from epilepsy models of human mutations recapitulating the features of epileptic patients has indicated that mTOR inhibitors may be of use in treating epilepsy associated with mutations in mTOR pathway genes. Here, we review recent advances in the molecular and genetic understanding of mTOR signaling in epileptic disorders. In particular, we focus on the development of and limitations to therapies targeting the mTOR pathway to treat epileptic seizures. We also discuss future perspectives on mTOR inhibition therapies and special diagnostic methods for intractable epilepsies caused by brain somatic mutations.

Inflammatory cytokines in midbrain periaqueductal gray contribute to diabetic induced pain hypersensitivity through phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway

  • Guo, Mochi;Jiang, Zongming;Chen, Yonghao;Wang, Fei;Wang, Zhifeng
    • The Korean Journal of Pain
    • /
    • v.34 no.2
    • /
    • pp.176-184
    • /
    • 2021
  • Background: Diabetes-related neuropathic pain frequently occurs, and the underpinning mechanism remains elusive. The periaqueductal gray (PAG) exhibits descending inhibitory effects on central pain transmission. The current work aimed to examine whether inflammatory cytokines regulate mechanical allodynia and thermal hyperalgesia induced by diabetes through the phosphoinositide 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) pathway in the PAG. Methods: Streptozotocin (STZ) was administered intraperitoneally to mimic allodynia and hyperalgesia evoked by diabetes in rats. Behavioral assays were carried out for determining mechanical pain and thermal hypersensitivity. Immunoblot and ELISA were performed to examine PAG protein amounts of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), as well as their corresponding receptors in STZ rats, and the expression of PI3K/protein kinase B (Akt)/mTOR signaling effectors. Results: Increased PAG p-PI3K/p-Akt/p-mTOR protein amounts were observed in STZ-induced animals, a PI3K-mTOR pathway inhibition in the PAG attenuated neuropathic pain responses. Moreover, the PAG concentrations of IL-1β, IL-6, and TNF-α and their receptors (namely, IL-1R, IL-6R, and tumor necrosis factor receptor [TNFR] subtype TNFR1, respectively) were increased in the STZ rats. Additionally, inhibiting IL-1R, IL-6R, and TNFR1 ameliorated mechanical allodynia and thermal hyperalgesia in STZ rats, alongside the downregulation of PI3K-mTOR signaling. Conclusions: Overall, the current study suggests that upregulated proinflammatory cytokines and their receptors in the PAG activate PI3K-mTOR signaling, thereby producing a de-inhibition effect on descending pathways in modulating pain transmission, and eventually contributing to neuropathic pain.

Expression and secretion of CXCL12 are enhanced in autosomal dominant polycystic kidney disease

  • Kim, Hyunho;Sung, Jinmo;Kim, Hyunsuk;Ryu, Hyunjin;Park, Hayne Cho;Oh, Yun Kyu;Lee, Hyun-Seob;Oh, Kook-Hwan;Ahn, Curie
    • BMB Reports
    • /
    • v.52 no.7
    • /
    • pp.463-468
    • /
    • 2019
  • Autosomal dominant polycystic kidney disease (ADPKD), one of the most common human monogenic diseases (frequency of 1/1000-1/400), is characterized by numerous fluid-filled renal cysts (RCs). Inactivation of the PKD1 or PKD2 gene by germline and somatic mutations is necessary for cyst formation in ADPKD. To mechanistically understand cyst formation and growth, we isolated RCs from Korean patients with ADPKD and immortalized them with human telomerase reverse transcriptase (hTERT). Three hTERT-immortalized RC cell lines were characterized as proximal epithelial cells with germline and somatic PKD1 mutations. Thus, we first established hTERT-immortalized proximal cyst cells with somatic PKD1 mutations. Through transcriptome sequencing and Gene Ontology (GO) analysis, we found that upregulated genes were related to cell division and that downregulated genes were related to cell differentiation. We wondered whether the upregulated gene for the chemokine CXCL12 is related to the mTOR signaling pathway in cyst growth in ADPKD. CXCL12 mRNA expression and secretion were increased in RC cell lines. We then examined CXCL12 levels in RC fluids from patients with ADPKD and found increased CXCL12 levels. The CXCL12 receptor CXC chemokine receptor 4 (CXCR4) was upregulated, and the mTOR signaling pathway, which is downstream of the CXCL12/CXCR4 axis, was activated in ADPKD kidney tissue. To confirm activation of the mTOR signaling pathway by CXCL12 via CXCR4, we treated the RC cell lines with recombinant CXCL12 and the CXCR4 antagonist AMD3100; CXCL12 induced the mTOR signaling pathway, but the CXCR4 antagonist AMD3100 blocked the mTOR signaling pathway. Taken together, these results suggest that enhanced CXCL12 in RC fluids activates the mTOR signaling pathway via CXCR4 in ADPKD cyst growth.

Resveratrol Downregulates Acetyl-CoA Carboxylase $\alpha$ and Fatty Acid Synthase by AMPK-mediated Downregulation of mTOR in Breast Cancer Cells

  • Park, Sahng-Wook;Yoon, Sa-Rah;Moon, Jong-Seok;Park, Byeong-Woo;Kim, Kyung-Sup
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.1047-1051
    • /
    • 2008
  • Overexpression of HER2 in breast cancer cells is considered to induce the expression of acetyl-CoA carboxylase $\alpha$ (ACACA) and fatty acid synthase (FASN) through activation of mammalian target of rapamycin (mTOR) signaling pathway. Resveratrol, a red wine polyphenol, has been shown to induce apoptosis in several cancers by interfering in several signaling pathways. Present study elucidated the mechanism by which resveratrol downregulates ACACA and FASN in breast cancer cells. Resveratrol activated AMP-activated protein kinase (AMPK) and downregulated mTOR in BT-474 cells. These effects of resveratrol were mimicked by AICAR, an AMPK activator, and exogenously expressed constitutively active AMPK, while they were abolished by a dominant-negative mutant of AMPK. The downregulation of mTOR was not accompanied with changes in Akt, the upstream regulator of mTOR. These findings indicate that the downregulation of ACACA and FASN by resveratrol is mediated by the downregulation of mTOR signaling pathway via activation of AMPK.

Mammalian target of rapamycin inhibitors for treatment in tuberous sclerosis

  • Kim, Won-Seop
    • Clinical and Experimental Pediatrics
    • /
    • v.54 no.6
    • /
    • pp.241-245
    • /
    • 2011
  • Tuberous sclerosis complex (TSC) is a genetic multisystem disorder that results from mutations in the TSC1 or TSC2 genes, and is associated with hamartomas in several organs, including subependymal giant cell tumors. The neurological manifestations of TSC are particularly challenging and include infantile spasms, intractable epilepsy, cognitive disabilities, and autism. The TSC1- and TSC2-encoded proteins modulate cell function via the mammalian target of rapamycin (mTOR) signaling cascade, and are key factors in the regulation of cell growth and proliferation. The mTOR pathway provides an intersection for an intricate network of protein cascades that respond to cellular nutrition, energy levels, and growth factor stimulation. In the brain, TSC1 and TSC2 have been implicated in cell body size, dendritic arborization, axonal outgrowth and targeting, neuronal migration, cortical lamination, and spine formation. The mTOR pathway represents a logical candidate for drug targeting, because mTOR regulates multiple cellular functions that may contribute to epileptogenesis, including protein synthesis, cell growth and proliferation, and synaptic plasticity. Antagonism of the mTOR pathway with rapamycin and related compounds may provide new therapeutic options for TSC patients.