• Title/Summary/Keyword: TNF-β

Search Result 425, Processing Time 0.023 seconds

Structural and Functional Roles of AIMP2 and TRAF2 in TNF-α Signaling (TNF-α 신호에서 AIMP2와 TRAF2의 구조적 및 기능적 역할)

  • Kim, Hyeon Jin;Jeong, Mi Suk;Jang, Se Bok
    • Journal of Life Science
    • /
    • v.30 no.1
    • /
    • pp.106-112
    • /
    • 2020
  • Aminoacyl tRNA synthetase complex interacting multifunctional protein 2 (AIMP2) is a scaffolding protein required for the assembly of multi-tRNA synthetase, and it can exert pro-apoptotic activity in response to DNA damage. In the presence of DNA damage, AIMP2 binds to mouse double minute 2 homolog (MDM2) to protect p53 from MDM2 attack. TGF-β signaling results in the nuclear translocation of AIMP2, whereby AIMP2 interacts with FUSE-binding protein, and, thus, suppresses c-myc. TNF receptor-associated factor 2 (TRAF2) is an important mediator between TNF-receptors 1 and 2 which are involved in the signaling of c-Jun N-terminal kinase (JNK), nuclear factor κB (NF-κB), and p38 mitogen-activated protein kinases (MAPKs). TRAF2 is required for the activations of JNK and NF-κB via TNF-α and the mediation of anti-apoptosis signaling. AIMP2 can also enhance pro-apoptosis in the TNF-α signaling. During this signaling, AIMP2 assists the association of E3 ubiquitin ligase, the cellular inhibitor of apoptosis protein 1 (c-IAP1) which is well known and responsible for the degradation of TRAF2. The formation of a complex among AIMP2, TRAF2, and c-IAP1 results in proteasome-mediated TRAF2 degradation. AIMP2 can induce apoptosis via downregulation of TRAF2 to interact directly in TNF-α signaling. This review provides new insight into the molecular mechanism responsible for AIMP2 and TRAF2 complex formation and treatments for TNFα-associated diseases.

Protective Effect of Niclosamide on Lipopolysaccharide-induced Sepsis in Mice by Modulating STAT3 Pathway (니클로사마이드를 이용한 STAT3 신호전달 조절을 통해 LPS로 유발된 패혈증 동물모델 보호 효과 검증 연구)

  • Se Gwang JANG
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.4
    • /
    • pp.306-313
    • /
    • 2023
  • Sepsis is a systemic inflammatory response, with manifestations in multiple organs by pathogenic infection. Currently, there are no promising therapeutic strategies. Signal transducer and activator of transcription 3 (STAT3) is a cell signaling transcription factor. Niclosamide is an anti-helminthic drug approved by the Food and Drug Administration (FDA) as a potential STAT3 inhibitor. C57BL/6 mice were treated with an intraperitoneal injection of lipopolysaccharide (LPS). Niclosamide was administered orally 2 hours after the LPS injection. This study found that Niclosamide improved the survival and lung injury of LPS-induced mice. Niclosamide decreased the levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) in serum. The effects of Niclosamide on phosphoinositide 3-kinase (PI3K), AKT, nuclear factor-κB (NF-κB), and STAT3 signaling pathways were determined in the lung tissue by immunoblot analysis. Niclosamide reduced phosphorylation of PI3K, AKT, NF-κB, and STAT3 significantly. Furthermore, it reduced the phosphorylation of STAT3 by LPS stimulation in RAW 264.7 macrophages. Niclosamide also reduced the LPS-stimulated expression of proinflammatory mediators, including IL-6, TNF-α, and IL-1β. Niclosamide provides a new therapeutic strategy for murine sepsis models by suppressing the inflammatory response through STAT3 inhibition.

Effects of Kamiyukgunja-tang on anti-CD40 and Recombinant Interleukin-4 induced Cytokine Production and Immunoglobulin E in Highly Purified Mouse B Cells (생쥐의 B 세포에서 면역글로블린 E의 분비와 사이토카인 생산에 대한 가미육군자탕의 효과)

  • Kim Woon Gil;Kim Dong Hee;Park Yang Chun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.4
    • /
    • pp.1065-1074
    • /
    • 2003
  • In order to evaluate the antiallergic effects of Kamiyukgunja-tang (KYGJT), studies were done. We measured the cytotoxic activity for lung fibroblast cell, cytokines transcript expression, production of INF-γ, IL-10, IL-4, GM-CSF, IL-1 β, TNF-α. IL-5 proliferation of B cell in anti-CD40mAb plus r1L-4 stimulated murine splenic B cells. The results were obtained as follows : 1. KYGJT was not showed cytotoxicity in the fibroblast lung cell. 2. KYGJT increased the gene synthesis of INF-γ, IL-10, GM-CSF(m-RNA). 3. KYGJT decreased the gene synthesis of IL-1β, IL-4, TNF-α, IL-5(m-RNA). 4. KYGJT decreased the appearance of TNF-α significantly. 5. KYGJT decreased the appearance of IgE significantly. 6. KYGJT decreased the proliferation of B cell significantly. 7. KYGJT decreased the appearance of Histamin Release Production significantly. The facts above prove that KYGJT is effective against the allergy. Thus. I think that we should study on this continuously

Antibacterial Activity and Anti-inflammatory Effect of Methanol Extracts of Saliva miltiorrhiza Against Oral Pathogenic Bacteria (단삼 메탄올 추출물의 구강 병원성 세균에 대한 항균 및 항염증효과)

  • Lee, JungHyeok;Yim, Dongsool;Choi, SungSook
    • Korean Journal of Pharmacognosy
    • /
    • v.52 no.1
    • /
    • pp.41-48
    • /
    • 2021
  • This research was conducted to investigate the antibacterial and anti-inflammatory effects of MeOH Ex. of Salvia miltiorrhiza (MESM) against oral pathogenic bacteria. Minimum inhibitory concentration (MIC), removal effect of biofilm produced by Streptococcus mutans, effect of gene expression of proinflammatory cytokines and effect of production of proinflammatory cytokine of MESM were tested. MESM showed moderated antibacterial activity against oral pathogenic bacteria. About 89±8% of biofilms produced by S. mutans were removed by MESM at a concentration of 1 mg/mL. Gene expression of IL-1β and TNF-α induced by Porphyromonas gingivalis were 8~9 folds reduced by MESM. Gene expression of IL-8 induced by Fusobacterium nucelatum were 12 folds reduced by MESM. Production of IL-1β, TNF-α and IL-8 were significantly suppressed by MESM. Conclusively, MESM showed potent antibacterial and anti-inflammatory effect against oral pathogenic bacteria.

Carboxymethyl Chitosan Promotes Migration and Inhibits Lipopolysaccharide-Induced Inflammatory Response in Canine Bone Marrow-Derived Mesenchymal Stem Cells

  • Ryu, Ho-Sung;Ryou, Seong-Hwan;Jang, Min;Ku, Sae-Kwang;Kwon, Young-Sam;Seo, Min-Soo
    • Journal of Veterinary Clinics
    • /
    • v.38 no.6
    • /
    • pp.261-268
    • /
    • 2021
  • The study was conducted to evaluate the effects of carboxymethyl chitosan (CMC) on proliferation, migration, and lipopolysaccharide (LPS)-induced inflammatory response in canine bone marrow-derived mesenchymal stem cells (BMSCs). The proliferation and migration of BMSCs were examined after treatment with CMC. The effect of CMC on the mRNA expression of inflammatory cytokines, such as interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, IL-10, and transforming growth factor (TGF)-β, was also evaluated by reverse transcription polymerase chain reaction (RT-PCR). In the proliferation assay, no significant changes were found at all CMC concentrations compared with controls. The migration assay showed that CMC dose-dependently stimulated the migration of BMSCs in normal and LPS-treated conditions. RT-PCR showed that TNF-α and IL-10 expressions were suppressed in the BMSCs after CMC treatment. However, other genes were not affected. Taken together, CMC promoted BMSC migration and inhibited TNF-α and IL-10. Therefore, CMC may be possible to regulate wound healing when mesenchymal stem cells are applied in inflammatory diseases.

Investigation of the Effect of Water Extract of Lithospermi Radix on the Expression of IL-1β, TNF-α and iNOS Genes in Raw 264.7 Cells (자초(紫草) 열수 추출물의 RAW 264.7 세포에서 IL-1β, TNF-α, iNOS 유전자 발현에 미치는 영향 연구)

  • Cho, Nam Joon;Choi, Young Ho;Lee, Woong Hee;Kim, Kee Kwang;Han, Hyo Sang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.31 no.4
    • /
    • pp.220-225
    • /
    • 2017
  • Lithospermi Radix (LR) is known to have an anti-inflammatory effect. However, the mechanisms are not well known. In this study, LPS-induced mouse RAW 264.7 macrophage cells were treated with LR to investigate the time-dependent inflammation response of LR. RAW 264.7 cells were treated with various concentrations of LR for 24 hours, followed by MTS assay. Cell viability was increased at all experimental concentrations. The mRNA expression levels of $IL-1{\beta}$, $TNF-{\alpha}$ and iNOS were increased by treatment of RAW 264.7 cells with LR at a concentration of $200{\mu}g/ml$ for 6 hours and 24 hours. Treatment of LR with $200{\mu}g/ml$ concentration for 6 hours promoted mRNA expression levels of $IL-1{\beta}$, $TNF-{\alpha}$ and iNOS in LPS-induced RAW 264.7 cells. However, $IL-1{\beta}$, $TNF-{\alpha}$ and iNOS mRNA expression was suppressed by treatment of LR with $200{\mu}g/ml$ concentration for 24 hours in LPS-induced RAW 264.7 cells. These results suggest that the effect on inflammation of LR is promptly promoted and then to rapidly alleviate the inflammatory reaction. This study proposes that the time-dependent activities of herbal medicine is a very important factor in analyzing the anti-inflammatory effect of various herbal medicines including LR.

Hyaluronic acid reduces inflammation and crevicular fluid IL-1β concentrations in peri-implantitis: a randomized controlled clinical trial

  • Sanchez-Fernandez, Elena;Magan-Fernandez, Antonio;O'Valle, Francisco;Bravo, Manuel;Mesa, Francisco
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.1
    • /
    • pp.63-74
    • /
    • 2021
  • Purpose: This study investigated the effects of hyaluronic acid (HA) on peri-implant clinical variables and crevicular concentrations of the proinflammatory biomarkers interleukin (IL)-1β and tumor necrosis factor (TNF)-α in patients with peri-implantitis. Methods: A randomized controlled trial was conducted in peri-implantitis patients. Patients were randomized to receive a 0.8% HA gel (test group), an excipient-based gel (control group 1), or no gel (control group 2). Clinical periodontal variables and marginal bone loss after 0, 45, and 90 days of treatment were assessed. IL-1β and TNF-α levels in crevicular fluid were measured by enzyme-linked immunosorbent assays at baseline and after 45 days of treatment. Clustering analysis was performed, considering the possibility of multiple implants in a single patient. Results: Sixty-one patients with 100 dental implants were assigned to the test group, control group 1, or control group 2. Probing pocket depth (PPD) was significantly lower in the test group than in both control groups at 45 days (control 1: 95% CI, -1.66, -0.40 mm; control 2: 95% CI, -1.07, -0.01 mm) and 90 days (control 1: 95% CI, -1.72, -0.54 mm; control 2: 95% CI, -1.13, -0.15 mm). There was a trend towards less bleeding on probing in the test group than in control group 2 at 90 days (P=0.07). Implants with a PPD ≥5 mm showed higher levels of IL-1β in the control group 2 at 45 days than in the test group (P=0.04). Conclusions: This study demonstrates for the first time that the topical application of a HA gel in the peri-implant pocket and around implants with peri-implantitis may reduce inflammation and crevicular fluid IL-1β levels.

Anti-neuroinflammatory Effects of Hwanggeumjakyak-tang on Lipopolysaccharide-induced Brain Injury Model in vivo and in vitro (지질다당류로 유발한 염증성 뇌손상 동물모델에 대한 황금작약탕의 억제효과 연구)

  • Kim, Jong-gyu;Im, Ji-sung;An, Sung-Hu;Song, Yung-sun
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.31 no.4
    • /
    • pp.1-11
    • /
    • 2021
  • Objectives Hwanggeumjakyak-tang (HJT) has traditionally been used to treat gastrointestinal inflammatory diseases; however, its protective effects against neuronal inflammation are still undiscovered. Methods We investigated the anti-neuroinflammatory effects of HJT water extract on lipopolysaccharide (LPS)-stimulated BV2 mouse microglia cells. BV2 cells were treated with LPS (1 ㎍/mL) 1 hour prior to the addition of HJT. We measured cell viability using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and nitrite production using the Griess assay. We performed a reverse transcription-polymerase chain reaction assay to measure messenger RNA expression of inflammatory cytokines including interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. Western blot analysis was performed to determine protein expression of mitogen-activated protein kinases (MAPKs) and inhibitor of nuclear factor kappa B (NF-κB)α. Results HJT inhibited excessive nitrite release in LPS-stimulated BV2 cells and also significantly inhibited inflammatory cytokines such as IL-1β, IL-6, and TNF-α in LPS-stimulated BV2 cells. Moreover, HJT significantly suppressed LPS-induced MAPK and NF-κB activation and inhibited the elevation of IL-1β, IL-6, and TNF-α in the brain of LPS-injected mice. Conclusions Our study highlights the anti-neuroinflammatory effects of HJT via MAPK and NF-κB deactivation.

Anti-inflammatory activity of Kyungok-go on Lipopolysaccharide-Stimulated BV-2 Microglia Cells

  • Hyun-Suk Song;Ji-Yeong An;Jin-Young Oh;Dong-Uk Kim;Bitna Kweon;Sung-Joo Park;Gi-Sang Bae
    • The Journal of Korean Medicine
    • /
    • v.43 no.4
    • /
    • pp.20-32
    • /
    • 2022
  • Objectives: Kyungok-go (KOG) is a traditional multi-herbal medicine commonly used for enforcing weakened immunity for long time. Recently, there are several reports that KOG has anti-inflammatory and immuno-stimulatory activities in many experimental models. However, the protective effects of KOG on neuronal inflammation are still undiscovered. Thus, we investigated the neuro-protective activity of KOG on lipopolysaccharide (LPS)-stimulated mouse microglia cells. To find out KOG's anti-neuroinflammatory effects on microglial cells, we examined the production of nitrite using griess assay, and mRNA expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α using real time RT-PCR. In addition, to examine the regulating mechanisms of KOG, we investigated the protein expression of mitogen-activated protein kinases (MAPKs) and Iκ-Bα by western blot. KOG inhibited the elevation of nitrite, iNOS and COX-2 on LPS-stimulated BV2 cells. Also, KOG significantly inhibited the pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α on LPS-stimulated BV2 microglial cells. Moreover, KOG inhibited the activation of c-Jun N-terminal kinase (JNK), P38 and degradation of Iκ-Bα but not the activation of extracellular signal regulated kinase (ERK) on LPS-stimulated BV2 microglial cells. These results showed KOG has the anti-inflammatory effects through the inhibition on nitrite, iNOS, COX-2, IL-1β, IL-6, and TNF-α via the deactivation of JNK, p38 and nuclear factor (NF)-κB on LPS-stimulated BV2 microglial cells. Thereby, KOG could offer the new and promising treatment for neurodegenerative disease related to neuroinflammation.

The Study on Antioxidant and Anti-inflammatory Effects of Taraxacum platycarpum H. Dahlstedt, Lonicera japonica Thunberg and Leonurus japonicus Houtt. Complex (포공영, 금은화, 익모초 혼합물의 항산화 및 항염증 효과에 관한 연구)

  • Sung Sin Huh;Young Il Kim
    • The Journal of Korean Medicine
    • /
    • v.44 no.3
    • /
    • pp.10-28
    • /
    • 2023
  • Objectives: This study was designed to experiment with the antioxidant and anti-inflammatory effects of Taraxacum platycarpum H. Dahlstedt, Lonicera japonica Thunberg, and Leonurus japonicus Houtt. complex (TLL) in LPS-induced RAW264.7 cell. Methods: The antioxidant activity of TLL was measured by FRAP assay, DPPH radical scavenging activity, ABTS radical scavenging activity. Total polyphenol and flavonoid contents of TLL were measured by using standard methods. The anti-inflammatory effects of TLL were measured by NO production, biomarker production (PGE2, IL-1β, IL-6, TNF-α), mRNA expression level (iNOS, COX-2, IL-1β, IL-6, TNF-α) and protein expression level (ERK, JNK, p38). Results: Total polyphenol and flavonoid contents in TLL were 58.03±1.02 mg of Gallic acid equivalents (GAE)/g and 16.58±0.60 mg of Quercetin equivalents (QE)/g respectively. In FRAP assay, DPPH and ABTS radical scavenging activity, a concentration-dependent increase in TLL was observed. To explore antioxidant and anti-inflammatory effects of TLL, RAW 264.7 cells were treated with TLL and LPS for 24 hours. Cell viability of RAW 264.7 cells were measured by adding EZ-Cytox, It was remarkably increased at 50, 100, 200 ㎍/㎖ concentrations of TLL. NO, ROS, iNOS, IL-1β, IL-6, TNF-α, ERK, JNK and p38 were remarkably decreased at 50, 100, 200 ㎍/㎖ concentrations of TLL compared to the control group. PGE2 and COX-2 were remarkably decreased at 100, 200 ㎍/㎖ concentrations Conclusion: These results suggest that TLL complex has antioxidant and anti-inflammatory effects.