• Title/Summary/Keyword: TMS(Transcranial Magnetic Stimulation)

Search Result 58, Processing Time 0.04 seconds

Effects of Motor Imagery Practice in Conjunction with Repetitive Transcranial Magnetic Stimulation on Stroke Patients

  • Ji, Sang-Goo;Cha, Hyun-Gyu;Kim, Ki-Jong;Kim, Myoung-Kwon
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.181-184
    • /
    • 2014
  • The aim of the present study was to examine whether motor imagery (MI) practice in conjunction with repetitive transcranial magnetic stimulation (rTMS) applied to stroke patients could improve theirgait ability. This study was conducted with 29 subjects diagnosed with hemiparesis due to stroke.The experimental group consisted of 15 members who were performed MI practice in conjunction with repetitive transcranial magnetic stimulation, while the control group consisted of 14 members who were performed MI practice and sham therapy. Both groups received traditional physical therapy for 30 minutes a day, 5 days a week, for 6 weeks; additionally, they received mental practice for 15 minutes. The experimental group was instructed to perform rTMS and the control group was instructed to apply sham stimulation for 15 minutes. Gait analysis was performed using a three-dimensional motion capture system, which is a real-time tracking device that delivers data via infrared reflective markers using six cameras. Results showed that the velocity, step length, and cadence of both groups were significantly improved after the practice (p<0.05). Significant differences were found between the groups in velocity and cadence (p<0.05) as well as with respect to the change rate (p<0.05) after practice. The results showed that MI practice in conjunction with rTMS is more effective in improving gait ability than MI practice alone.

Repetitive transcranial magnetic stimulation in central post-stroke pain: current status and future perspective

  • Riva Satya Radiansyah;Deby Wahyuning Hadi
    • The Korean Journal of Pain
    • /
    • v.36 no.4
    • /
    • pp.408-424
    • /
    • 2023
  • Central post-stroke pain (CPSP) is an incapacitating disorder that impacts a substantial proportion of stroke survivors and can diminish their quality of life. Conventional therapies for CPSP, including tricyclic antidepressants, anticonvulsants, and opioids, are frequently ineffective, necessitating the investigation of alternative therapeutic strategies. Repetitive transcranial magnetic stimulation (rTMS) is now recognized as a promising noninvasive pain management method for CPSP. rTMS modulates neural activity through the administration of magnetic pulses to specific cortical regions. Trials analyzing the effects of rTMS on CPSP have generated various outcomes, but the evidence suggests possible analgesic benefits. In CPSP and other neuropathic pain conditions, high-frequency rTMS targeting the primary motor cortex (M1) with figure-eight coils has demonstrated significant pain alleviation. Due to its associaton with analgesic benefits, M1 is the most frequently targeted area. The duration and frequency of rTMS sessions, as well as the stimulation intensity, have been studied in an effort to optimize treatment outcomes. The short-term pain relief effects of rTMS have been observed, but the long-term effects (> 3 months) require further investigation. Aspects such as stimulation frequency, location, and treatment period can influence the efficacy of rTMS and ought to be considered while planning the procedure. Standardized guidelines for using rTMS in CPSP would optimize therapy protocols and improve patient outcomes. This review article provides an up-to-date overview of the incidence, clinical characteristics, outcome of rTMS in CPSP patients, and future perspective in the field.

Effects of Mental Practice in Conjunction with Repetitive Transcranial Magnetic Stimulation on the Upper Limbs of Sub-acute Stroke Patients

  • Ji, Sang-Goo;Kim, Myoung-Kwon;Cha, Hyun-Gyu
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.353-356
    • /
    • 2014
  • The aim of the present study was to examine whether mental practice (MP) in conjunction with repetitive transcranial magnetic stimulation (rTMS) can improve the upper limb function of sub-acute stroke patients. This study was conducted with 32 subjects who were diagnosed with hemiparesis by stroke. The experimental group consisted of 16 members upon each of whom was performed MP in conjunction with rTMS, whreas the control group consisted of 16 members upon each of whom was performed MP and sham rTMS. Both groups received traditional physical therapy for 30 minutes a day, 5 days a week, for 6 weeks; additionally, they received mental practice for 15 minutes a day. The experimental group was instructed to perform rTMS, and the control group was instructed to apply sham rTMS for 15 minutes. A motor cortex excitability analysis was performed by motor evoked potentials (MEPs), and upper limb function was evaluated by Fugl-Meyer Assessment (FMA) and the Box and Block test (BBT). Results showed that the amplitude, latency, FMA, and BBT of the experimental group and the latency, FMA, and BBT of the control group were significantly improved after the experiment (p<0.05). Significant differences were found between the groups in amplitude and latency after the experiment (p<0.05). The results showed that MP in conjunction with rTMS is more effective in improving upper limb function than MP alone.

Effects of Repetitive Transcranial Magnetic Stimulation on Motor Recovery in Lower Extremities of Subacute Stage Incomplete Spinal Cord Injury Patients: A Randomized Controlled Trial

  • Ji, Sang-Goo;Cha, Hyun-Gyu;Kim, Myoung-Kwon
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.427-431
    • /
    • 2015
  • The aim of this study was to investigate whether repetitive transcranial magnetic stimulation (rTMS) can improve motor recovery in the lower extremities of the patients with subacute stage spinal cord injury (SCI). This study was conducted with 19 subjects diagnosed with paraplegia because of SCI. The experimental group included 10 subjects who underwent active rTMS, and the control group included 9 subjects who underwent sham rTMS. The SCI patients in the experimental group underwent conventional rehabilitation therapy, and active rTMS was applied daily to the hotspot of the lesional hemisphere. The SCI patients in the control group underwent sham rTMS and conventional rehabilitation therapy. The participants in both the groups received therapy five days per week for six weeks. Latency, amplitude, and velocity were assessed before and after the six-week therapy period. A significant difference in post-treatment gains for the latency and velocity was observed between the experimental and control groups (p < 0.05). However, no significant differences in the amplitude were observed between the two groups (p > 0.05). The results of this study indicate that rTMS may be beneficial in improving motor recovery in the lower extremities of subacute stage SCI patients.

Effects of Differences Frequency of Repeated Transcranial Magnetic Stimulation Applied to the Less Affected Contralesional Corticomotor Area on Upper Extremity Function in Patients with Stroke (뇌졸중 환자의 비손상측 대뇌겉질 운동영역에 적용한 반복 경두개 자기자극의 빈도가 팔 기능에 미치는 영향 )

  • Ha-Na Kim;Sang-Mi Chung
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.4
    • /
    • pp.281-289
    • /
    • 2023
  • Purpose : In this study, we aimed to determine how frequencies different of repetitive transcranial magnetic stimulation applied to the less affected contalesional corticomotor area affect upper extremity motor function in patients with acute stroke within 3 months of onset. By doing so, we aimed to propose a new method of rTMS intervention based on the degree of damage and recovery status of the patient, rather than the generalized rTMS intervention that has been used uniformly. Methods : The rTMS intervention was applied on the contralesional side of the cerebral hemisphere damage. 15 subjects in the HF-rTMS group, 12 subjects in the LF-rTMS group, and 14 subjects in the SF-rTMS group were randomized to receive the rTMS intervention in each group for a total of 10 sessions on five consecutive weekdays for two weeks, and underwent FMA-U to determine changes in upper extremity function following the intervention in each group. FMA-U was performed within 24 hours before and after the rTMS intervention. Results : When the FMA-U was performed to determine the pre- and post-intervention changes in upper extremity motor function within the groups, no statistically significant differences were found in the SF-rTMS group before and after the intervention, but significant statistical differences were found in the HF-rTMS group (p=.006) and the LF-rTMS group (p=.020), with greater significance in the HF-rTMS group than the LF-rTMS group. Conclusion : This study confirmed that compensatory action by activating the less affected contralesional corticomotor area based on the bimodal balance-recovery model can support upper extremity recovery patients with acute stroke within 3 months of onset, depending on the degree of damage level and recovery status. Therefore, the results of the contralesional HF-rTMS application in this study may provide a basis for proposing a new rTMS intervention for upper extremity recovery in stroke patients.

Study on Change of Poly ADP Ribose Polymerase in the Rat with Thrombotic Stroke by Full Wave Cockroft Walton method's Transcranial Magnetic Stimulation

  • Kim, Whi-Young;Kim, Jun-Hyoung
    • Journal of Magnetics
    • /
    • v.19 no.1
    • /
    • pp.20-27
    • /
    • 2014
  • This study examined the relationships between protein expression and Poly ADP ribose polymerase in brain cell death in brains damaged by thrombotic stroke and treated with the Full Wave- Cockroft Walton (FWCW) method of Transcranial Magnetic Stimulation (TMS). The two-way switching element for TMS drove a half-bridge inverter of the current resonance of direct current voltage (+) and direct current voltage (-), and the experiment was conducted by stimulating the mice with thrombotic stroke through a range of pulses. Thrombotic stroke was caused of ligation of the common carotid artery of male SD mice, and blood reperfusion was conducted five minutes later. Protein expression was examined in immune reaction cells, which reacted to an antibody to Poly ADP ribose polymerase in the cerebrum cells, and western blotting. Observations of the PARP changes after thrombotic stroke showed that the number of Poly ADP ribose polymerase reactions were significantly lower (p < 0.05) in the group treated with TMS of the FWCW than the group with thrombotic stroke 24 hours after its onset. The application of FWCW-TMS helped prevent the necrosis of nerve cells and might prevent the brain damage that occurs as a result of thrombotic stroke, and improve the function recovery and disorder of brain cells.

Repetitive Transcranial Magnetic Stimulation Combined with Task Oriented Training to Improve Upper Extremity Function After Stroke

  • Kim, Myoung-Kwon
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.170-173
    • /
    • 2014
  • The purpose of the present study was to investigate the effect of repetitive transcranial magnetic stimulation (rTMS) in conjunction with task oriented training, on cortical excitability and upper extremity function recovery in stroke patients. This study was conducted with 31 subjects who were diagnosed as a hemiparesis by stroke. Participants in the experimental (16 members) and control groups (15 members) received rTMS and sham rTMS, respectively, during a 10 minutes session, five days per week for four weeks, followed by task oriented training during a 30 minutes session, five days per week for four weeks. Motor cortex excitability was performed by motor evoked potential and upper limb function was evaluated by motor function test. Both groups showed a significant increment in motor function test and amplitude, latency in motor evoked potential compared to pre-intervention (p < 0.05). A significant difference in post-training gains for the motor function test, amplitude in motor evoked potential was observed between the experimental group and the control group (p < 0.05). The findings of the current study demonstrated that incorporating rTMS in task oriented training may be beneficial in improving the effects of stroke on upper extremity function recovery.

The Effects of Repetitive Transcranial Magnetic Stimulation Integrated Mirror Therapy on the Gait of Chronic Stroke Patients

  • Cha, Hyun-Gyu;Kim, Myoung-Kwon
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.133-137
    • /
    • 2015
  • This study was conducted to determine the effects of repetitive transcranial magnetic stimulation (rTMS) integrated mirror therapy on the gait of post-stroke patients. Thirty patients who were six months post-stroke were assigned to either the experimental group (n = 15) or the control group (n = 15). Stroke patients in the experimental group underwent rTMS and mirror therapy for the lower limbs, while those in the control group underwent rTMS and sham therapy. Participants in both groups received therapy five days per week for four weeks. A significant difference in post-training gains for the single support phase, step length, stride length and velocity was observed between the experimental group and the control group (p < 0.05). The experimental group showed a significant increment in the single support phase, step length, stride length, swing phase, velocity, cadence, double support phase and step width as compared to pre-intervention (p < 0.05). The control group showed a significant increment in step length, velocity, cadence and step width compared to preintervention (p < 0.05). Further investigation of the availability and feasibility of rTMS integrated mirror therapy for post-stroke patients as a therapeutic approach for gait rehabilitation is warranted.

Clinical Efficacy of Repetitive Transcranial Magnetic Stimulation for Treatment of Depression and Latest Trends in TMS Techniques (반복 경두개자기자극술의 우울증 치료효과 및 최신동향에 대한 고찰)

  • Kim, Shin Tae;Kim, Hae Won;Kim, Se Joo;Kang, Jee In
    • Korean Journal of Biological Psychiatry
    • /
    • v.24 no.3
    • /
    • pp.95-109
    • /
    • 2017
  • Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive neuromodulation technique which can change cortical excitability in targeted area by producing magnetic field pulses with an electromagnetic coil. rTMS treatment has been used to treat various neuropsychiatric disorders including depression. In this review, we evaluate the literature on rTMS for depression by assessing its efficacy on different subtypes of depression and different technical parameters. In particular, we focus on the results of randomized clinical trials and meta-analyses for depression after the US Food and Drug Administration approval in 2008, which acknowledged its efficacy and acceptability. We also review the new forms of rTMS therapy including deep TMS, theta-burst stimulation, and magnetic seizure therapy (MST) that have been under recent investigation. High frequency rTMS over left dorsolateral prefrontal cortex (DLPFC), low frequency rTMS over right DLPFC, or bilateral rTMS is shown to be effective and acceptable in treatment for patients with non-psychotic, unipolar depression either as monotherapy or adjuvant. Deep TMS, theta-burst stimulation and MST are promising new TMS techniques which warrant further research.

Effects of High Frequency Repetitive Transcranial Magnetic Stimulation on Function in Subacute Stroke Patients

  • Cha, Hyun-Gyu;Kim, Myoung-Kwon;Nam, Hyoung-Chun;Ji, Sang-Goo
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.192-196
    • /
    • 2014
  • The aim of the present study was to examine the effects of high and low frequency repetitive transcranial magnetic stimulation on motor cortical excitability and the balance function in subacute stroke patients. Twenty-four subjects were randomly assigned to either the high frequency (HF) rTMS group, or the low frequency (LF) rTMS group, with 12 subjects each. All subjects received routine physical therapy. In addition, both groups performed a total of 20 sessions of rTMS for 20 minutes, once a day, 5 times per week, for a 4-week period. In the HF rTMS group, 10 Hz rTMS was applied daily to the hotspot of the lesional hemisphere; and in the LF rTMS group, 1 Hz rTMS was applied daily to the hotspot of the nonlesional hemisphere. Motor cortex excitability was determined by motor evoked potentials, and the balance function was evaluated by use of the Balance Index (BI) and the Berg Balance Scale (BBS), before and after the intervention. The change rate in the value of each variable differed significantly between the two groups (p<0.05). Furthermore, significant differences were observed between all post-test variables of the two groups (p<0.05). In the HF rTMS, significant differences were found in all the pre- and post-test variables (p<0.05). On the other hand, in the LF rTMS, significant difference was observed only between the pre- and post-test results of BI and BBS (p<0.05). The findings demonstrate that HF rTMS can be more helpful in improving the motor cortical excitability and balance function of patients with subacute stroke treatment than LF rTMS, and that it may be used as a practical adjunct to routine rehabilitation.