DOI QR코드

DOI QR Code

Repetitive Transcranial Magnetic Stimulation Combined with Task Oriented Training to Improve Upper Extremity Function After Stroke

  • Received : 2014.01.28
  • Accepted : 2014.02.27
  • Published : 2014.06.30

Abstract

The purpose of the present study was to investigate the effect of repetitive transcranial magnetic stimulation (rTMS) in conjunction with task oriented training, on cortical excitability and upper extremity function recovery in stroke patients. This study was conducted with 31 subjects who were diagnosed as a hemiparesis by stroke. Participants in the experimental (16 members) and control groups (15 members) received rTMS and sham rTMS, respectively, during a 10 minutes session, five days per week for four weeks, followed by task oriented training during a 30 minutes session, five days per week for four weeks. Motor cortex excitability was performed by motor evoked potential and upper limb function was evaluated by motor function test. Both groups showed a significant increment in motor function test and amplitude, latency in motor evoked potential compared to pre-intervention (p < 0.05). A significant difference in post-training gains for the motor function test, amplitude in motor evoked potential was observed between the experimental group and the control group (p < 0.05). The findings of the current study demonstrated that incorporating rTMS in task oriented training may be beneficial in improving the effects of stroke on upper extremity function recovery.

Keywords

References

  1. L. Jongbloed, Stroke 17, 765 (1986). https://doi.org/10.1161/01.STR.17.4.765
  2. H. Nakayama, H. S. Jorgensen, H. O. Raaschou, and T. S. Olsen, Arch. Phys. Med. Rehabil 75, 394 (1994). https://doi.org/10.1016/0003-9993(94)90161-9
  3. J. Desrosiers, G. Bravo, R. Hebert, E. Dutil, and L. Mercier, Muscle Nerve 25, 568 (2002). https://doi.org/10.1002/mus.10061
  4. J. Broeks, G. Lankhorst, K. Rumping, and A. J. Prevo, Disabil Rehabil 21, 357 (1999). https://doi.org/10.1080/096382899297459
  5. J. Chae, K. Kilgore, R. Triolo, and D. Yu, Crit. Rev. Phys. Rehabil 12, 1 (2000) . https://doi.org/10.1615/CritRevPhysRehabilMed.v12.i4.60
  6. J. Jonsdottir, D. Cattaneo, M. Recalcati, A. Reqola, M. Rabuffetti, M. Ferrarin, and A. Casiraqhi. 24, 478 (2010).
  7. L. Wevers, I. van de Port, M. Vermue, G. Mead, and G. Kwakkel, Stroke 40, 2450 (2009). https://doi.org/10.1161/STROKEAHA.108.541946
  8. C. E. Lang, J. R. Macdonald, D. S. Reisman, L. Boyd, T. Jacobson Kimberley, S. M. Schindler-Ivens, T. G. Hornby, S. A. Ross, and P. L. Scheets, Arch. Phys. Med. Rehabil 90, 1692 (2009). https://doi.org/10.1016/j.apmr.2009.04.005
  9. A. Pascual-Leone, D. Bartres-Faz, ad J. P. Keenan, Philos. Trans. R Soc. Lond B Biol. Sci. 354, 1229 (1999). https://doi.org/10.1098/rstb.1999.0476
  10. V. Di Lazzaro, M. Dileone, P. Profice, F. Pilato, B. Cioni, M. Meglio, F. Capone, and P. A. Tonali, Stroke 37, 2850 (2006). https://doi.org/10.1161/01.STR.0000244824.53873.2c
  11. A. J. Butler and S. L. Wolf, Phys. Ther. 87, 719 (2007). https://doi.org/10.2522/ptj.20060274
  12. M. F. Folstein, S. E. Folstein, and P. R. McHugh, J. Psychiatr Res. 12, 189 (1975). https://doi.org/10.1016/0022-3956(75)90026-6
  13. A. Cooper, I. M. Musa, R. Deursen, and C. M. Wiles, Clin Rehabil 19, 760 (2005). https://doi.org/10.1191/0269215505cr888oa
  14. S. Aitkens, J. Lord, E. Bernauer, Jr. W. M. Fowler, J. S. Lieberman, and P. Berck, Muscle Nerve 12, 173 (1989). https://doi.org/10.1002/mus.880120302
  15. C. S. Song and S. J. Hwang, Phys. Ther. Kor. 19, 1 (2012).
  16. M. Kobayashi and A. Pascual-Leone, Lancet Neurol 2, 145 (2003). https://doi.org/10.1016/S1474-4422(03)00321-1
  17. A. Peinemann, B. Reimer, C. Loer, A. Quartorone, A. Munchau, B. Conrad, and H. R. Siebner, Clin. Neurophysiol 115, 1519 (2004). https://doi.org/10.1016/j.clinph.2004.02.005
  18. S. Miyamoto, T. Kondo, Y. Suzukamo, A. Michimata, and S. Izumi, Am. J. Phys. Med. Rehabil 88, 247 (2009). https://doi.org/10.1097/PHM.0b013e3181951133
  19. Y. R. Yang, R. Y. Wang, K. H. Lin, M. Y. Chu, and R. C. Chan, Clin. Rehabil 20, 860 (2006). https://doi.org/10.1177/0269215506070701
  20. M. Rensink, M. Schuurmans, E. Lindeman, and T. Hafsteinsdottir, J. Adv. Nurs. 65, 737 (2009). https://doi.org/10.1111/j.1365-2648.2008.04925.x
  21. B. J. Roth, J. M. Saypol, M. Hallett, and L. G. Cohen. Electroencephalogr Clin Neurophyisol 81, 47 (1991). https://doi.org/10.1016/0168-5597(91)90103-5
  22. T. Wagner, M. Gangitano, R. Romero, H. Theret, M. Kobayashi, D. Anschel, J. Ives, N. Cuffin, D. Schomer, and A. Pascual-Leone, Neurosci. Lett. 354, 91 (2004) https://doi.org/10.1016/S0304-3940(03)00861-9
  23. S. Barreca, S. L. Wolf, S. Fasoli, and R. Bohannon, Neurorehabil Neural Repair 17, 220 (2003). https://doi.org/10.1177/0888439003259415
  24. L. G. Cohen, B. J. Roth, J. Nilsson, N. Danq, M. Panizza, S. Bandinelli, W. Friauf, and M. Hallett, Electroencephaloqr Clin. Neurophysiol 75, 350 (1990). https://doi.org/10.1016/0013-4694(90)90113-X
  25. M. Ameil, C. Grefkes, F. Kemper, F. P. Riegg, A. K. Rehme, H. Karbe, G. R. Fink, and D. A. Nowak, Ann. Neurol 66, 298 (2009). https://doi.org/10.1002/ana.21725
  26. D. A. Nowak, C. Grefkes, M. Ameli, and G. R. Fink, Neural Repair 23, 641 (2009). https://doi.org/10.1177/1545968309336661
  27. J. Mally and E. Dinya, Brain Res. Bull. 76, 388 (2008). https://doi.org/10.1016/j.brainresbull.2007.11.019