• 제목/요약/키워드: TMP (Turbo Molecular Pump)

검색결과 7건 처리시간 0.025초

A Destruction Pattern Analysis of a Turbo-Molecular Pump According to the Foreline Clamp Damage in an ICP Dry Etcher for 300 mm Wafers

  • Jeong, Jinyong;Lee, Intaek;Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • 제24권2호
    • /
    • pp.27-32
    • /
    • 2015
  • We analyzed the destruction patterns of a turbo-molecular pump (TMP) resulting from its sudden exposure of a foreline to the atmospheric pressure due to a destruction of the foreline connecting clamp of an ICP dry etcher for 300 mm wafers during high-vacuum operation ($5{\times}10^{-6}$ Torr). Unlike in the case of view port's breakage, the TMP's rotor module was crashed inside the chamber. The primary damage resulted from the collision of the blades and stators, and the secondary damage resulted from the breaking of the rotor - driving shaft assembly. The fixing screws of the rotor and axial shaft were bent and broken when the TMP controller output the maximum current even after the crash event. Electrical power consumption analysis of the TMP power controller confirmed it. The stress distributions were analyzed by a finite element method using CFD-ACE+ multi physics software. Rotating inertia of each parts and kinetic energies were calculated as well. 68% of the rotational kinetic energy is deposited by the rotor - shaft module.

보조펌프(backing pump)의 배기용량에 따른 터보분자펌프(TMP) 배기속도 측정에 관한 연구

  • 김완중;강상백;고문규;정완섭;임종연
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.362-362
    • /
    • 2011
  • 터보분자펌프(turbo-molecular pump: TMP)는 고진공펌프 중의 하나로, 반도체/디스플레이 등 첨단 공정에서 진공 환경을 조성하는 핵심장비이다. 터보분자펌프(TMP)의 특성평가는 세계 여러 나라의 표준제정기구에서 제정한 국제규격에 그 기반을 두어, 한국표준과학연구원 진공기술 센터에서는 터보분자펌프(TMP) 특성평가시스템을 자체 설계/제작하여 그 신뢰성을 확인하기 위해 개발품 및 상용품 평가에 주력하고 있다. 터보분자펌프(TMP)는 보조펌프(backing pump)의 지원을 받으므로 보조펌프(backing pump) 용량에 따른 터보분자펌프(TMP)의 배기속도를 측정하고자 한다. 국제규격에서 제시하는 보조펌프 (backing pump)의 용량이 일정이상 작을 경우, 터보분자펌프(TMP)의 배기속도 및 압축비에 대해 감소함을 제시한다. 이 영향은 전체 압력 범위에서 보조펌프(backing pump)의 배기속도가 일정 용량 이상이면 터보분자펌프(TMP)의 배기속도에 영향이 없음을 제시하며, 이에 본 연구에서는 국제규격에서 제시하는 보조펌프(backing pump) 용량에 대해 서로 다른 조건에 맞추어 터보분자 펌프(TMP)의 배기속도에 미치는 영향을 연구하고자 한다. 본 연구에서는 100m3/h, 10m3/h 의 서로 다른 배기속도를 가진 보조펌프(backing pump)를 선정하여 분자량이 다른 가스(N2, He, Ar 등)에 대한 압축비의 변화와 배기속도 측정에 관해 상관 관계를 제시하며, 100m3/h, 10m3/h 의 서로 다른 배기속도를 가진 보조펌프(backing pump)에 따른 터보분자펌프(TMP)의 배기속도 및 운전성능을 제시하고자 한다.

  • PDF

분자류 영역에 따른 터보분자펌프(TMP) 배기속도 측정에 관한 연구

  • 강상백;신진현;차덕준;정완섭;임종연
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.46-46
    • /
    • 2010
  • 고진공펌프 중의 하나인 터보분자펌프(turbo-molecular pump: TMP)는 반도체/디스플레이 등 첨단 공정에서 진공 환경을 조성하는 핵심장비로서 현재 한국표준과학연구원 진공기술센터에서 개발 중인 고진공펌프 종합특성평가시스템을 구축 중이며, 1000 L/s 및 2500L/s 배기속도 용량을 가지는 터보분자펌프(TMP)의 database를 구축하고 있다. 이에 터보분자펌프(TMP)의 배기속도 측정 시 사용되는 가스의 분자류 영역에 따른 배기속도의 변화를 연구하고자 한다. 터보분자펌프(TMP)의 배기속도는 분자류 영역에 따라 상이한 배기속도를 가진다. 특히 가벼운 분자들은 터보분자펌프(TMP)로 배기시키기 어려우며, 분자량이 작은 가스들은 분자량이 큰가스 분자들에 비해 압축비(compression ratio)도 작아진다. 압축비가 큰 경우에는 실재 운전조건에 무관하게 배기속도가 최대값을 가지지만, 압축비가 작을 경우에는 운전 시 터보분자펌프(TMP)의 압축비에 따라 배기속도가 달라 질 수 있으며, 압축비는 펌프의 inlet에서의 압력과 exhaust에서의 압력의 비이다. 즉, 가벼운 기체 분자(H2, He 등)들은 무거운 기체 분자(N2, Ar 등)들에 비해 배기속력이 작아진다. 현재 개발 중인 한국표준과학연구원 진공기술센터의 고진공 종합특성평가시스템을 이용하여 분자류 영역에 따른 가벼운 기체 분자와 무거운 기체 분자의 배기속도를 측정하여 분자류 영역에 따라 상이한 배기속도의 변화를 연구하고자 한다. 본 논문에서는 터보분자펌프(TMP)의 분자류 영역에 따른 가벼운 기체 He과 무거운 기체 N2를 사용하여 압축비의 변화와 배기속도 측정에 관해 상관관계를 제시하며, 분자류 영역에 따른 터보분자펌프(TMP)의 배기속도 운전성능을 제시하고자 한다.

  • PDF

고진공펌프의 상태진단 시스템

  • 정완섭;남승환;김완중;임종연
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.101-101
    • /
    • 2012
  • 본 논문은 현재 제품화 단계로 진행 중인 터보 분자펌프(turbo-molecular pump, TMP)와 극저온 펌프(cryopump)의 고장 방지 및 예지 보수를 위한 상태 진단 시스템에 대하여 소개를 한다. 본 상태 진단 시스템은 고진공 펌프들의 다중 상태변수 즉 흡/배기부의 진공 압력, 부위별 온도, 소비 전류(혹은 전력), 그리고 부위별 진동 신호들을 실시간으로 측정하는 상태변수 수집장치, 수집된 시계열 상태변수들이 저장된 database, 그리고 저장된 상태변수를 이용한 고진공펌프의 상태진단 프로그램으로 구성되어 있다. 금번 연구에서 구축한 상태변수 체계의 특징 중 하나는 진동신호를 상태변수로 측정하여 이를 상태진단에 활용하는 점이 기존의 접근방법과 상이한 점이다. 실시간 신호 수집장치는 NI사 PXI 시스템 기반의 16채널 24-bit 동시 전압신호 측정 모듈, 8부위의 온도 측정장치(Lakeshore 218S, RS-232C 통신), 그리고 펌프의 소비전류/전력 측정장치(Hioki 3169, RS-232C), 그리고 고진공 펌프의 흡입 및 배기구의 진공도 측정장치로 구성하였다. 신호 수집용 프로그램은 NI사 Labview를 이용하여 작성하였다. 본 장치는 Nano-Fab 센터의 협조 하에 turbo-molecular 펌프와 cryopump측정 단에 각각 1대를 설치 완료하였으며 현재까지 운용 중이다. PC에 저장된 시계열 상태변수 database는 기 개발된 적응형 인자모델을 이용한 매개변수로 변환되며, 상태진단은 변환된 매개변수를 이용하여 수행할 예정이다.

  • PDF

터보분자펌프(TMP) 배기속도 측정에 관한 고찰 (Study on the Measurement of TMP Pumping Speed)

  • 강상백;신진현;차덕준;고득용;정완섭;임종연
    • 한국진공학회지
    • /
    • 제19권4호
    • /
    • pp.249-255
    • /
    • 2010
  • 터보분자펌프(TMP)의 특성평가는 ISO, PNEUROP, DIN, JIS, AVS 등 세계 여러 나라의 표준제정기구에서 제정한 국제규격에 그 근거를 두고 있다. 한국표준과학연구원에서는 이러한 국제규격에 기반을 둔 터보분자펌프의 특성평가시스템을 자체 설계/제작하여 그 신뢰성을 확인하기 위해 개발품 및 상용품의 평가에 주력하고 있다. 터보분자펌프의 배기속도 측정방법으로서 기체흐름 영역에 따른 throughput method와 orifice method를 적용하고 있으나 측정게이지, 유량계 및 orifice conductance의 불확도 등 실질적으로 정확한 배기속도를 제시하기 위한 조건들의 제약 때문에 많은 측정오차를 포함하고 있다고 볼 수 있다. 이러한 배기속도의 측정오차를 줄이기 위한 하나의 고찰로서 본 논문에서는 $10^{-1}$ Pa-L/s 영역까지의 유량 주입범위를 가지는 기 구축된 정적법을 이용한 유량주입에 기반을 둔 throughput method를 이용하여 1000 L/s TMP의 측정 능력을 검증하고자 한다. 또한 분자류 영역인 orifice method를 사용할 경우 고진공영역, 미세유량 주입영역으로 진입할수록 커질 수밖에 없는 배기속도 측정 불확도를 최소화시키기 위해 검증된 유량을 이용한 conductance 값을 제시하여, 기 언급한 두 가지 배기 속도 측정 방법의 연속성을 유지하기 위한 실험적인 방법론을 제기하고자 한다.

UBM 마그네트론 스퍼터 시스템을 이용한 구리 타겟의 이온전류밀도 향상 연구 (Development of UBMS(Unbalanced Magnetron Sputtering) System and Ion Current Density Measurement of Copper Target)

  • 강충현;주정훈
    • 한국표면공학회지
    • /
    • 제50권3호
    • /
    • pp.192-197
    • /
    • 2017
  • A 6-way-cross consisting of a 2.75-inch CF flange was used as a main chamber on a PFEIFFER VACUUM TMP station based on a 67 l / sec turbo molecular pump and a diaphragm pump to produce a magnet array with a volume ratio of 5.5: 1.A 1-inch diameter copper target and graphite target were fabricated using MDX-1.5K from Advanced Energy Industries, Inc as a DC power supply. Ion current density of copper target and graphite target was measured by unbalanced magnetron sputtering. The basic pressure condition was $6.3{\times}10^{-7}mbar$ and the process pressure was Ar 50 sccm at $1.0{\times}10^{-2}mbar$ (7.5 mTorr) in the Ar atmosphere. Therefore, the relative density of copper ions reaching the substrate with the measured ion current density was derived.