• Title/Summary/Keyword: TMCP Steel

Search Result 96, Processing Time 0.024 seconds

Characteristics of plate forming by flame heating for TMCP steel (TMCP 강재의 곡가공 특성)

  • Yun, Jung-Geun;Sin, Sang-Beom;Kim, Ha-Geun;Kim, Gyeong-Gyu
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.6-8
    • /
    • 2005
  • The purpose of this study is to evaluate characteristics of plate forming by flame heating for E and EH36 TMCP steel. The characteristics of interest were heat-formability of TMCP steel and mechanical properties of heated area. For a given dimension, heat-formability of TMCP steel was inferior to that of a conventional steel because TMCP steel required more heating passes and time. Angular distortion and transverse shrinkage of TMCP steel decreased with an increase in line heating speed for given heating conditions. The mechanical properties of TMCP steel after plate forming by flame heating were high enough to satisfy the requirements.

  • PDF

A Study on the Stress Corrosion Cracking Evaluation for Weld Joint of TMCP steel by SP-SSRT Method (SP-SSRT법에 의한 TMCP강 용접부의 응력부식균열 평가에 관한 연구)

  • 유효선;정희돈;정세희
    • Journal of Welding and Joining
    • /
    • v.15 no.1
    • /
    • pp.46-54
    • /
    • 1997
  • The object of this paper is to evaluate SCC(stress corrosion cracking) susceptibility for parent metal and bond line region of weld joints which have the various weld heat input condtions in TMCP(thermo-mechanical control process) steel by SP-SSRT(small punch-slow strain rate test) method. And the SCC test results of TMCP steel are compared with those of the conventional HT50 steel which has te almost same tensile strength level like TMCP steel. The loading rate used was $3\times10^{-4}$mm/min and the corrosive environment was synthetic sea water. According to the test results, in the case of parent metal, TMCP steel showed higher SCC susceptibility than HT50 steel because of the high plastic strain level of ferrite microstructure obtained by accelerated cooling. And in the case of bond line, the both TMCP steel and HT50 steel showed low load-displacement behaviors and higher SCC susceptibility above 0.6. These results may be caused by theembrittled martensite structure on HT50 steel and by the coarsened grain and the proeutectoid ferrite structure obtained by the impart of accelerated cooling effect on TMCP steel.

  • PDF

A study on the fatigue fracture characteristics of TMCP high tensile strength steel welds (TMCP 고장력강 용접부의 피로파양 특성에 관한 연구)

  • 김영식;노재충;한명수;김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.47-54
    • /
    • 1988
  • TMCP steel manufactured by controlled rolling followed by accelerated cooling process is known to have extra-ordinary mechanical properties such as tensile strength and toughness. However, there is much uncertainty about the fatigue fracture characteristics of this steel. In this paper, the fatigue fracture behaviour of the TMCP steel in base metal and weldment were inspected through the Dynamic Implant test method. Those results were quantitavely compared with those of the ordinary normalized steel of same strength level. Moreover, the effect of the diffusible hydrogen included in the welded part on the fatigue fracture behaviour were made clear. As the experimental results, the fatigue fracture characteristics of the TMCP steel in case of base metal proved out to be superior to that of the normalized steel. However, the TMCP steel weldment including the diffusible hydrogen appeared to have inferior fatigue characteristics compared with the same conditioned normalized steel weldment.

  • PDF

Characteristics of Mechanical Properties at Elevated Temperatures and Residual Stresses in Welded joint of SM570-TMC Steel (SM570-TMC 강의 고온 시 기계적 성질 및 용접접합부의 잔류응력 특징)

  • Lee, Chin Hyunng;Chang, Kyong Ho;Park, Hyun Chan;Lee, Jin Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.3
    • /
    • pp.395-403
    • /
    • 2006
  • Recently constructed bridges often have long spans and simple structure details considering not only the function but other important factors such as aesthetics, maintenance, construction duration and life cycle cost. Therefore, bridges require high-performance steels like extra-thick plate steels and thermo-mechanical control process (TMCP) steels. TMCP stels are now gaining wide attention due to their weldability improved strength and toughness. Recently, SM570-TMC steel, which is a high-strength TMCP steel with a tensile strength of 600 MPa, has been developed and applied to steel structures. However, using this steel in building steel structures requires the elucidation of not only material characteristics but also the mechanical characteristic of welded joints. In this study, high-temperature tensile properties of SM570-TMC steel were investigated through the elevated temperature welded joints of SM570-TMC steel were studied through the three-dimensional thermal elasticplastic analyses on the basis of mechanical properties at high temperatures obtained from the experiment.

Microstructures and Impact Properties of 500mm Single Pass Electrogas Weldment for EH36 TMCP steels (EH36 TMCP강의 50mm 1 패스 일렉트로가스 용접부의 조직 및 충격특성)

  • 이해우;고대은
    • Journal of Welding and Joining
    • /
    • v.17 no.3
    • /
    • pp.96-101
    • /
    • 1999
  • Microstructures and mechanical properties of weldments were studied for EH36 TMCP higher-strength hull steel with electrogas welding jprocess. In case of a newly designed EH36 TMCP steel for large heat input welding process, the Microstructures of HAZ shows more narrow width of grain coarsed region than that of conventional EH36 TMCP weldments, the amount of acicular ferrite, which is beneficial to impact toughness, increased while the amount of grain-boundary ferrite decreased. Charpy V-notched impact tests show that a newly designed EH36 TMCP steel weldment satisfies all the requirement of specifications, especially at the fusion line +2mm where the conventional EH36 TMCP steel fails to exceed the requirement.

  • PDF

A Study on the Fatigue Characteristics of Accelerated Cooled TMCP Steel's Welded Joint with High Heat Input (가속냉각형 TMCP강재 대입열 용접부의 피로특성)

  • 윤중근;김희진
    • Journal of Welding and Joining
    • /
    • v.6 no.1
    • /
    • pp.28-34
    • /
    • 1988
  • The fatigue test was carried out to evaluate the fatigue characteristics of the accelerated cooled (ACC) TMCP steel and its welded joint. From this study, it was confirmed that ACC TMCP steel has higher fatigue strength than conventional steels. After welding, however, the fatigue strength of ACC TMCP steel was deteriorated associated with HAZ softening when weld reinforcement was removed. On the other hand, with weld reinforcement, there is no effect of HAZ softening on the fatigue strength of welded joint because it is strongly dependant on the detail weld geometry i.e., stress concentration factor. Accordingly the fatigue strength of actual welded joint increases with decreasing the stress concentration factor of welded joint, regardless of HAZ softening.

  • PDF

A Study on Effect of PWHT in AH36-TMCP Steel (AH36-TMCP강의 용접후열처리 효과에 관한 연구)

  • 유효선;장원상;안병국;정세희
    • Journal of Welding and Joining
    • /
    • v.16 no.6
    • /
    • pp.44-51
    • /
    • 1998
  • It is well known that the fine bainitic microstructure obtained by TMCP(thermo-mechanical control process) secures the high toughness of base metal. Besides, TMCP steel is very suitable for high heat input in welding as it has low carbon equivalent. In HAZ, however, the accelerated cooling effect imparted on the matrix by the weld thermal cycles is relieved and thus the weldment of TMCP steel has softening zone which shows low fracture toughness compared with base metal. Therefore, PHWT of weldment is carried out to improve the fracture toughness in weldment of TMCP steel which has softening zone. In this study, the effects of PWHT on the weldment of AH36-TMCP steel are investigated by the small punch (SP) test. From the several results such as SP energy and displacement at room temperature, the behavior of transition curves, the fracture strength at -196$^{\circ}C$, distribution of (DBTT)sp and (DBTT)sp, the PWHT condition of A.C. after 85$0^{\circ}C$-1 sec W.C. was suitable condition for recovering a softening zone of HAZ as welded.

  • PDF

Fatigue Behavior of Welded Joints in HT60 Grade TMCP Steel (HT60급 TMCP강 용접부의 피로 거동)

  • Yong, Hwan Sun;Kim, Seok Tae;Cho, Yong Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.4 s.29
    • /
    • pp.133-133
    • /
    • 1996
  • Application of the relationship $da/dN=C({\Delta}K)^{m}$ is effective in the analysis of fatigue crack growth life. The values of material constant C and m have great influences on the predicted fatigue life and the relationship between fatigue crack growth rate(da/dN) and stress intensity factor range(${\Delta}K$) is effective in fatigue crack growth behavior. In this paper, fatigue crack growth behavior of the welded joints in HT60 grade TMCP(Thermo Machanical Control Process) steel have been studied. To evalute the fatigue crack growth rates of HT60 grade TMCP steel, fatigue test was performed by base metal(BM), heat affected zone(HAZ) and weld metal(WM) in TMCP steel at room temperature. We determined the relationship of $da/dN-{\Delta}K$ by correlation between C and m obtained from the Paris-Erdogan power law data supplied HT60 grade TMCP steel. The obtained results from this study indicate that fatigue crack growth rate of TMCP steel is not influenced by softening effect which occurs in the HAZ when high heat input weld is carried out. Softening effects, which affect fatigue properties. are shown that it is not affected to the fatigue growth rates significantly.

  • PDF

A study on fracture toughness of welded joint and orientation in TMCP steel by th SP test (SP시험에 의한 TMCP강의 방향성 및 용접부의 파괴인성에 관한 연구)

  • 유효선;안병국;류대영;정세희
    • Journal of Welding and Joining
    • /
    • v.16 no.6
    • /
    • pp.35-43
    • /
    • 1998
  • In this paper, the fracture toughness evaluation of the various microstructures such as HAZ, F.L and W.M in weldment of TMCP steel which has the softening zone owing to high heat input welding was carried out by using of the small punch(SP) test. In addition, the fracture toughness with the specimen orientation of rolled TMCP steel was investigated by means of SP test and the crack opening displacement (COD) test and then was compared with that of conventional SM50YB steel. From the results of SP test for TMCP steel, it could be seen that the SP energy transition curves of three different orientation were shifted to higher temperature side in order of S, T and L. But the {TEX}$DBTT_{SP}${/TEX} of each orientation specimen did not show a lot of differences and were quite lower than those of conventional SM50YB steel. The mechanical properties of HAZ structure in weldment of TMCP steel such as hardness, SP energy at room temperature and -196$^{\circ}C$ and the upper shelf energy of SP energy transition curve were lower than those of base metal due to softening. The {TEX}$DBTT_{SP}${/TEX} of each microstructure in weldment of TMCP steel increased in order of HAZ, F.L and W.M against base metal, but all microstructures showed a quite lower {TEX}$DBTT_{SP}${/TEX} than those of SM50YB steel.

  • PDF

An Experimental Study on Corrosion Fatigue Strength of TMCP Steel in Consideration of NaCl Salinity (염분농도변화에 따른 TMCP강의 부식피로강도에 관한 실험적 연구)

  • 강성원;김철현;이해우
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.3
    • /
    • pp.54-60
    • /
    • 2003
  • Fatigue strength of offshore structures or ship structures is significantly decreased due to corrosive environment condition such as sea water and/or coal, crude oil of cargoes, compared to that of on shore structures. In corrosive environment, fatigue strength of structures also depends on characteristics of weld material heat affected zone(HAZ). In this research work, rotary bending fatigue tests of parent material and HAZ of TMCP steel were performed in order to investigate the initiation and propagation of cracks both in air and in NaCl solution. Comparison of fatigue strength In relation with the salinity of NaCl were carried out as well. According to the test results weld material or HAZ of TMCP steel showed higher fatigue strength than that of the parent material. The fatigue strength of TMCP steel decreases drastically in NaCl solution compared to that of in air environment. In particular, more reduced fatigue strength is observed in 1% NaCl solution than in 3% NaCl solution.