• Title/Summary/Keyword: TLRs

Search Result 91, Processing Time 0.023 seconds

Anti-inflammatory Effects of Resveratrol, (-)-Epigallocatechin-3-gallate and Curcumin by the Modulation of Toll-like Receptor Signaling Pathways (Toll-like receptors 신호전달체계 조절을 통한 resveratrol, (-)-epigallocatechin-3-gallate, curcumin의 항염증 효과)

  • Youn, Hyung-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.481-487
    • /
    • 2007
  • Toll-like receptors (TLRs) induce innate immune responses that are essential for host defenses against invading microbial pathogens, thus leading to the activation of adaptive immune responses. In general, TLRs have two major downstream signaling pathways: the MyD88- and TRIF-dependent pathways, which lead to the activation of $NF-{\kappa}B$ and IRF3. Numerous studies have demonstrated that certain phytochemicals possessing anti-inflammatory effects inhibit $NF-{\kappa}B$ activation induced by pro-inflammatory stimuli, including lipopolysaccharides and $TNF{\alpha}$. However, the direct molecular targets for such anti-inflammatory phytochemicals have not been fully identified. Identifying the direct targets of phytochemicals within the TLR pathways is important because the activation of TLRs by pro-inflammatory stimuli can induce inflammatory responses that are the key etiological conditions in the development of many chronic inflammatory diseases. In this paper we discuss the molecular targets of resveratrol, (-)-epigallocatechin-3-gallate (EGCG), and curcumin in the TLR signaling pathways. Resveratrol specifically inhibited the TRIF pathway in TLR3 and TLR4 signaling, by targetting TBK1 and RIP1 in the TRIF complex. Furthermore, EGCG suppressed the activation of IRF3 by targetting TBK1 in the TRIF-dependent signaling pathways. In contrast, the molecular target of curcumin within the TLR signaling pathways is the receptor itself, in addition to $IKK{\beta}$. Together, certain dietary phytochemicals can modulate TLR-derived signaling and inflammatory target gene expression, and in turn, alter susceptibility to microbial infection and chronic inflammatory diseases.

Suppression of the TRIF-dependent Signaling Pathway of Toll-like Receptor by Cadmium in RAW264.7 Macrophages

  • Park, Se-Jeong;Youn, Hyung-Sun
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.3
    • /
    • pp.187-192
    • /
    • 2009
  • Toll-like receptors (TLRs) play an important role in host defense by sensing invading microbial pathogens. The stimulation of TLRs by microbial components triggers the activation of the myeloid differential factor 88 (MyD88)- and toll-interleukin-1 receptor domain-containing adapter inducing interferon-$\beta$ (TRIF)-dependent downstream signaling pathways. TLR/MyD88 signaling pathway induces the activation of nuclear factor-kappa B (NF-${\kappa}B$) and the expression of inflammatory cytokine genes, including tumor necrosis factor-alpha, interleukin (IL)-6, IL-12, and IL-$1{\beta}$. On the other hand, TLR/TRIF signaling pathway induces the delayed-activation of NF-${\kappa}B$ and interferon regulatory factor 3 (IRF3), and the expression of type I interferons (IFNs) and IFN-inducible genes. The divalent heavy metal cadmium (Cd) is clearly toxic to most mammalian organ systems, especially the immune system. Yet, the underlying toxic mechanism(s) remain unclear. Cd inhibits the MyD88-dependent pathway by ceasing the activity of inhibitor-${\kappa}B$ kinase. However, it is not known whether Cd inhibits the TRIF-dependent pathway. Presently, Cd inhibited NF-${\kappa}B$ and IRF3 activation induced by lipopolysaccharide (LPS) and polyinosinic-polycytidylic acid. Cd inhibited LPS-induced IRF3 phosphorylation and IFN-inducible genes such as interferon inducible protein-10 and regulated on activation normal T-cell expressed and secreted (RANTES). These results suggest that Cd can modulate TRIF-dependent signaling pathways of TLRs.

Toll-like Receptor3-mediated Induction of Chemokines in Salivary Epithelial Cells

  • Li, Jingchao;Jeong, Mi-Young;Bae, Ji-Hyun;Shin, Yong-Hwan;Jin, Meihong;Hang, Sung-Min;Lee, Jeong-Chai;Lee, Sung-Joong;Park, Kyung-Pyo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.4
    • /
    • pp.235-240
    • /
    • 2010
  • Toll-like receptors (TLRs) functionally expressed in salivary epithelial cells, but their roles remain elusive. Among TLRs family, TLR3 is activated by dsRNA, a byproduct of viral infection. The aim of this study was to investigate the role of TLR3 in the inflammatory immune responses using HSG cells. Reverse transcriptase-polymerase chain reaction (RT-PCR), real-time PCR and ELISA were performed to identify expression of TLRs and TLR3-mediated chemokine inductions. The chemotaxis assay of activated T lymphocytes was also performed. Treatment of HSG cells with polyinosinic: polycytidylic acid (poly(I:C)) significantly increased interferon-$\gamma$-inducible protein 10 (IP-10), interferoninducible T-cell $\alpha$ chemoattractant (I-TAC), and regulated on activation, normal T-cells expressed and secreted (RANTES) gene expressions in a concentration-dependent manner. Anti-TLR3 antibody blocked the increases of IP-10 and I-TAC genes. Poly(I:C)-induced increases of IP-10 and I-TAC were also confirmed at protein levels from cell lysates, but their release into extracellular medium was detected only in IP-10. We found that the culture media from HSG cells stimulated with poly(I:C) significantly increases T lymphocyte migration. Our results suggest that TLR3 plays an important role in chemokine induction, particularly IP-10, in salivary epithelial cells.

Evaluation of Anti-cancer and Anti-proliferative Activity of Medicinal Plant Extracts (Saffron, Green Tea, Clove, Fenugreek) on Toll Like Receptors Pathway

  • Ajmal, Sidra;Shafqat, Mahwish;Ajmal, Laiba;Younas, Hooria;Tasadduq, Raazia;Mahmood, Nasir
    • Natural Product Sciences
    • /
    • v.28 no.3
    • /
    • pp.121-129
    • /
    • 2022
  • Despite considerable efforts, cancer remains an aggressive killer worldwide. Chemotherapeutic drugs that are currently in use lead to destructive side effects and have not succeeded in fulfilling expectations. For centuries, medicinal plants are used for treating various diseases and are also known to have anticancer activity. The main aim of this research was to evaluate antiproliferative activity of saffron, clove, fenugreek, and green tea on Vero and MDA-MB-231 cell lines and to subsequently analyze the effect of these extracts on IRAK-4, TAK1, IKK-alpha, IKK-beta, NF-Kappa B, IRF3, IRF7 genes in Toll Like Receptors (TLRs) pathway. Antiproliferative assay was done by Neutral Red Dye uptake assay. Methanolic extract of green tea was found to be most effective against both cell lines as IC50 was achieved at least concentration of the extract. For molecular studies, MDAMB-231 cells were sensitized with methanolic extract of green tea at same IC50, and RT-PCR was performed to determine the relative expression of genes. Expression of IRAK-4, TAK1, IKK-beta, NF-Kappa B, IRF3 genes was down regulated and IRF7 and IKKalpha was upregulated. Green tea has a potential cytotoxic effect on both cell lines which was demonstrated by its effect on the expression of (TLRs) pathway genes.

NF-${\kappa}$ B Activation and Cyclooxygenase-2 Expression Induced by Toll-Like Receptor Agonists can be Suppressed by Isoliquiritigenin (Isoliquiritigenin의 toll-like receptor agonists에 의해서 유도된 NF-${\kappa}$B 활성화와 cyclooxygenase-2 발현 억제)

  • Park, Se-Jeong;Yang, Seung-Ju;Youn, Hyung-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.220-224
    • /
    • 2009
  • Toll-like receptors(TLRs) are pattern recognition receptors(PRRs) that recognize pathogen-associated molecular patterns(PAMPs) and regulate the activation of innate immunity. All TLR signaling pathways culminate in the activation of NF-${\kappa}$B, leading to the induction of inflammatory gene products such as COX-2. Licorice (Glycyrrhiza uralensis) has been used for centuries as an herbal medicine. Isoliquiritigenin(ILG), a simple chalcone-type flavonoid, is an active component present in licorice and has been used to treat many chronic diseases. However, the mechanism as to how ILG mediates health effects is still largely unknown. In the present report, we present biochemical evidence that ILG inhibits the NF-${\kappa}$B activation induced by TLR agonists and the overexpression of downstream signaling components of TLRs, MyD88, IKK${\beta}$, and p65. ILG also inhibits TLR agonists-induced COX-2 expression. These results suggest that anti-inflammatory effects of ILG are caused by modulation of the immune responses regulated by TLR signaling pathways.

Regulation of toll-like receptors expression in muscle cells by exercise-induced stress

  • Park, Jeong-Woong;Kim, Kyung-Hwan;Choi, Joong-Kook;Park, Tae Sub;Song, Ki-Duk;Cho, Byung-Wook
    • Animal Bioscience
    • /
    • v.34 no.10
    • /
    • pp.1590-1599
    • /
    • 2021
  • Objective: This study investigates the expression patterns of toll-like receptors (TLRs) and intracellular mediators in horse muscle cells after exercise, and the relationship between TLRS expression in stressed horse muscle cells and immune cell migration toward them. Methods: The expression patterns of the TLRs (TLR2, TLR4, and TLR8) and downstream signaling pathway-related genes (myeloid differentiation primary response 88 [MYD88]; activating transcription factor 3 [ATF3]) are examined in horse tissues, and horse peripheral blood mononuclear cells (PBMCs), polymorphonuclear cells (PMNs) and muscles in response to exercise, using the quantitative reverse transcription-polymerase chain reaction (qPCR). Expressions of chemokine receptor genes, i.e., C-X-C motif chemokine receptor 2 (CXCR2) and C-C motif chemokine receptor 5 (CCR5), are studied in PBMCs and PMNs. A horse muscle cell line is developed by transfecting SV-T antigen into fetal muscle cells, followed by examination of muscle-specific genes. Horse muscle cells are treated with stressors, i.e., cortisol, hydrogen peroxide (H2O2), and heat, to mimic stress conditions in vitro, and the expression of TLR4 and TLR8 are examined in stressed muscle cells, in addition to migration activity of PBMCs toward stressed muscle cells. Results: The qPCR revealed that TLR4 message was expressed in cerebrum, cerebellum, thymus, lung, liver, kidney, and muscle, whereas TLR8 expressed in thymus, lung, and kidney, while TLR2 expressed in thymus, lung, and kidney. Expressions of TLRs, i.e., TLR4 and TLR8, and mediators, i.e., MYD88 and ATF3, were upregulated in muscle, PBMCs and PMNs in response to exercise. Expressions of CXCR2 and CCR5 were also upregulated in PBMCs and PMNs after exercise. In the muscle cell line, TLR4 and TLR8 expressions were upregulated when cells were treated with stressors such as cortisol, H2O2, and heat. Migration of PBMCs toward stressed muscle cells was increased by exercise and oxidative stresses, and combinations of these. Treatment with methylsulfonylmethane (MSM), an antioxidant on stressed muscle cells, reduced migration of PBMCs toward stressed muscle cells. Conclusion: In this study, we have successfully cultured horse skeletal muscle cells, isolated horse PBMCs, and established an in vitro system for studying stress-related gene expressions and function. Expression of TLR4, TLR8, CXCR2, and CCR5 in horse muscle cells was higher in response to stressors such as cortisol, H2O2, and heat, or combinations of these. In addition, migration of PBMCs toward muscle cells was increased when muscle cells were under stress, but inhibition of reactive oxygen species by MSM modulated migratory activity of PBMCs to stressed muscle cells. Further study is necessary to investigate the biological function(s) of the TLR gene family in horse muscle cells.

Glycogen synthase kinase 3β in Toll-like receptor signaling

  • Ko, Ryeojin;Lee, Soo Young
    • BMB Reports
    • /
    • v.49 no.6
    • /
    • pp.305-310
    • /
    • 2016
  • Toll-like receptors (TLRs) play a critical role in the innate immune response against pathogens. Each TLR recognizes specific pathogen-associated molecular patterns, after which they activate the adaptor protein MyD88 or TRIF-assembled signaling complex to produce immune mediators, including inflammatory cytokines and type I IFNs. Although the activation of TLR is important for host defense, its uncontrolled activation can damage the host. During the past decade, numerous studies have demonstrated that GSK3β is a key regulator of inflammatory cytokine production in MyD88-mediated TLR signaling via TLR2 and TLR4. Recently, GSK3β has also been implicated in the TRIF-dependent signaling pathway via TLR3. In this review, we describe current advances on the regulatory role of GSK3β in immune responses associated with various TLRs. A better understanding of the role of GSK3β in TLR signaling might lead to more effective anti-inflammatory interventions.

Host Responses from Innate to Adaptive Immunity after Vaccination: Molecular and Cellular Events

  • Kang, Sang-Moo;Compans, Richard W.
    • Molecules and Cells
    • /
    • v.27 no.1
    • /
    • pp.5-14
    • /
    • 2009
  • The availability of effective vaccines has had the most profound positive effect on improving the quality of public health by preventing infectious diseases. Despite many successful vaccines, there are still old and new emerging pathogens against which there is no vaccine available. A better understanding of how vaccines work for providing protection will help to improve current vaccines as well as to develop effective vaccines against pathogens for which we do not have a proper means to control. Recent studies have focused on innate immunity as the first line of host defense and its role in inducing adaptive immunity; such studies have been an intense area of research, which will reveal the immunological mechanisms how vaccines work for protection. Toll-like receptors (TLRs), a family of receptors for pathogen-associated molecular patterns on cells of the innate immune system, play a critical role in detecting and responding to microbial infections. Importantly, the innate immune system modulates the quantity and quality of long-term T and B cell memory and protective immune responses to pathogens. Limited studies suggest that vaccines which mimic natural infection and/or the structure of pathogens seem to be effective in inducing long-term protective immunity. A better understanding of the similarities and differences of the molecular and cellular events in host responses to vaccination and pathogen infection would enable the rationale for design of novel preventive measures against many challenging pathogens.

Parthenolide Suppresses the Expression of Cyclooxygenase-2 and Inducible Nitric Oxide Synthase Induced by Toll-Like Receptor 2 and 4 Agonists

  • Lee, A-Neum;Park, Se-Jeong;Yun, Sae-Mi;Lee, Mi-Young;Son, Bu-Soon;Youn, Hyung-Sun
    • Biomedical Science Letters
    • /
    • v.16 no.1
    • /
    • pp.39-45
    • /
    • 2010
  • Toll-like receptors (TLRs), which are pattern recognition receptors (PRRs), recognize pathogen-associated molecular patterns (PAMPs) and regulate the activation of innate immunity. All TLR signaling pathways culminate in the activation of NF-${\kappa}B$, leading to the induction of inflammatory gene products such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Parthenolide, a sesquiterpene lactone isolated from the herb feverfew (Tanacetum parthenium), has been used as folk remedies to treat many chronic diseases for many years. In the present report, we present biochemical evidence that parthenolide inhibits the NF-${\kappa}B$ activation induced by TLR agonists and the overexpression of downstream signaling components of TLRs, MyD88, $IKK{\beta}$, and p65. Parthenolide also inhibits TLR agonists-induced COX-2 and iNOS expression. These results suggest that parthenolide can modulate the immune responses regulated by TLR signaling pathways.

Helper T Cell Polarizing Through Dendritic Cells (수지상세포를 통한 조력 T세포의 분화 - 알레르기 질환을 중심으로 -)

  • Han, Manyong
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.1
    • /
    • pp.6-12
    • /
    • 2005
  • In the last few years, a spectrum of dendritic cells(DCs), including toll like receptors(TLRs), might play a critical role in regulating allergy and asthma. DC plays a central role in initiating immune responses, linking innate and adaptive responses to pathogen. Human peripheral blood has three non-overlapping dendritic subset that expressed various 11 TLRs. These dendritic subsets and TLR contribute significant polarizing influences on T helper differentiation, but how this comes about is less clear. A better understanding of DC immunobiology may lead to the comprehension of allergy pathophysiology to prevent early stage allergic march.