DOI QR코드

DOI QR Code

Host Responses from Innate to Adaptive Immunity after Vaccination: Molecular and Cellular Events

  • Kang, Sang-Moo (Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine) ;
  • Compans, Richard W. (Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine)
  • Received : 2008.12.21
  • Accepted : 2008.12.24
  • Published : 2009.01.31

Abstract

The availability of effective vaccines has had the most profound positive effect on improving the quality of public health by preventing infectious diseases. Despite many successful vaccines, there are still old and new emerging pathogens against which there is no vaccine available. A better understanding of how vaccines work for providing protection will help to improve current vaccines as well as to develop effective vaccines against pathogens for which we do not have a proper means to control. Recent studies have focused on innate immunity as the first line of host defense and its role in inducing adaptive immunity; such studies have been an intense area of research, which will reveal the immunological mechanisms how vaccines work for protection. Toll-like receptors (TLRs), a family of receptors for pathogen-associated molecular patterns on cells of the innate immune system, play a critical role in detecting and responding to microbial infections. Importantly, the innate immune system modulates the quantity and quality of long-term T and B cell memory and protective immune responses to pathogens. Limited studies suggest that vaccines which mimic natural infection and/or the structure of pathogens seem to be effective in inducing long-term protective immunity. A better understanding of the similarities and differences of the molecular and cellular events in host responses to vaccination and pathogen infection would enable the rationale for design of novel preventive measures against many challenging pathogens.

Keywords

Acknowledgement

Supported by : NIH/NIAID

References

  1. Akira, S. (2006). TLR signaling. Curr. Top Microbiol. Immunol. 311, 1-16 https://doi.org/10.1007/3-540-32636-7_1
  2. Akira, S., Yamamoto, M., and Takeda, K. (2003). Role of adapters in Toll-like receptor signalling. Biochem. Soc. Trans. 31, 637-642 https://doi.org/10.1042/BST0310637
  3. Akira, S., Uematsu, S., and Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell 124, 783-801 https://doi.org/10.1016/j.cell.2006.02.015
  4. Alarcon, J.B., Hartley, A.W., Harvey, N.G., and Mikszta, J.A. (2007). Preclinical evaluation of microneedle technology for intradermal delivery of influenza vaccines. Clin. Vaccine Immunol. 14, 375-381 https://doi.org/10.1128/CVI.00387-06
  5. Auewarakul, P., Kositanont, U., Sornsathapornkul, P., Tothong, P., Kanyok, R., and Thongcharoen, P. (2007). Antibody responses after dose-sparing intradermal influenza vaccination. Vaccine 25, 659-663 https://doi.org/10.1016/j.vaccine.2006.08.026
  6. Bachmann, M.F., Zinkernagel, R.M., and Oxenius, A. (1998). Immune responses in the absence of costimulation: viruses know the trick. J. Immunol. 161, 5791-5794
  7. Barton, G.M., and Medzhitov, R. (2003). Toll-like receptor signaling pathways. Science 300, 1524-1525 https://doi.org/10.1126/science.1085536
  8. Bernasconi, N.L., Traggiai, E., and Lanzavecchia, A. (2002). Maintenance of serological memory by polyclonal activation of human memory B cells. Science 298, 2199-2202 https://doi.org/10.1126/science.1076071
  9. Bertolotti-Ciarlet, A., Ciarlet, M., Crawford, S.E., Conner, M.E., and Estes, M.K. (2003). Immunogenicity and protective efficacy of rotavirus 2/6-virus-like particles produced by a dual baculovirus expression vector and administered intramuscularly, intranasally, or orally to mice. Vaccine 21, 3885-3900 https://doi.org/10.1016/S0264-410X(03)00308-6
  10. Beutler, B., Hoebe, K., Georgel, P., Tabeta, K., and Du, X. (2004). Genetic analysis of innate immunity: TIR adapter proteins in innate and adaptive immune responses. Microbes Infect. 6, 1374-1381 https://doi.org/10.1016/j.micinf.2004.08.017
  11. Blazevic, V., Trubey, C.M., and Shearer, G.M. (2000). Comparison of in vitro immunostimulatory potential of live and inactivated influenza viruses. Hum. Immunol. 61, 845-849 https://doi.org/10.1016/S0198-8859(00)00170-1
  12. Blink, E.J., Light, A., Kallies, A., Nutt, S.L., Hodgkin, P.D., and Tarlinton, D.M. (2005). Early appearance of germinal center-derived memory B cells and plasma cells in blood after primary immunization. J. Exp. Med. 201, 545-554 https://doi.org/10.1084/jem.20042060
  13. Bowie, A., and O'Neill, L.A. (2000). The interleukin-1 receptor/Toll-like receptor superfamily: signal generators for pro-inflammatory interleukins and microbial products. J. Leukoc. Biol. 67, 508-514 https://doi.org/10.1002/jlb.67.4.508
  14. Bright, R.A., Carter, D.M., Crevar, C.J., Toapanta, F.R., Steckbeck, J.D., Cole, K.S., Kumar, N.M., Pushko, P., Smith, G., Tumpey, T.M., et al. (2008). Cross-clade protective immune responses to influenza viruses with H5N1 HA and NA elicited by an influenza virus-like particle. PLoS ONE 3, e1501 https://doi.org/10.1371/journal.pone.0001501
  15. Buonaguro, L., Tornesello, M.L., Tagliamonte, M., Gallo, R.C., Wang, L.X., Kamin-Lewis, R., Abdelwahab, S., Lewis, G.K., and Buonaguro, F.M. (2006). Baculovirus-derived human immunodeficiency virus type 1 virus-like particles activate dendritic cells and induce ex vivoT-cell responses. J. Virol. 80, 9134-9143 https://doi.org/10.1128/JVI.00050-06
  16. Buonaguro, L., Monaco, A., Arico, E., Wang, E., Tornesello, M.L., Lewis, G.K., Marincola, F.M., and Buonaguro, F.M. (2008). Gene expression profile of peripheral blood mononuclear cells in response to HIV-VLPs stimulation. BMC Bioinformatics 9, S5 https://doi.org/10.1186/1471-2105-9-S2-S5
  17. Burrows, P.D., and Cooper, M.D. (1997). B cell development and differentiation. Curr. Opin. Immunol. 9, 239-244 https://doi.org/10.1016/S0952-7915(97)80142-2
  18. Cairns, B., Maile, R., Barnes, C.M., Frelinger, J.A., and Meyer, A.A. (2006). Increased Toll-like receptor 4 expression on T cells may be a mechanism for enhanced T cell response late after burn injury. J. Trauma 61, 293-298; discussion 298-299 https://doi.org/10.1097/01.ta.0000228969.46633.bb
  19. Carter, R.H., and Fearon, D.T. (1992). CD19: lowering the threshold for antigen receptor stimulation of B lymphocytes. Science 256, 105-107 https://doi.org/10.1126/science.1373518
  20. Carter, R.H., Spycher, M.O., Ng, Y.C., Hoffman, R., and Fearon, D.T. (1988). Synergistic interaction between complement receptor type 2 and membrane IgM on B lymphocytes. J. Immunol. 141, 457-463
  21. Chen, W., and Gluud, C. (2005). Vaccines for preventing hepatitis B in health-care workers. Cochrane Database Syst. Rev.(4), CD000100 https://doi.org/10.1002/14651858.CD000100
  22. Chilosi, M., Adami, F., Lestani, M., Montagna, L., Cimarosto, L., Semenzato, G., Pizzolo, G., and Menestrina, F. (1999). CD138/syndecan-1: a useful immunohistochemical marker of normal and neoplastic plasma cells on routine trephine bone marrow biopsies. Mod. Pathol. 12, 1101-1106
  23. Coutelier, J.P., van der Logt, J.T., Heessen, F.W., Warnier, G., and Van Snick, J. (1987). IgG2a restriction of murine antibodies elicited by viral infections. J. Exp. Med. 165, 64-69 https://doi.org/10.1084/jem.165.1.64
  24. Crotty, S., Felgner, P., Davies, H., Glidewell, J., Villarreal, L., and Ahmed, R. (2003). Cutting edge: long-term B cell memory in humans after smallpox vaccination. J. Immunol. 171, 4969-4973 https://doi.org/10.4049/jimmunol.171.10.4969
  25. Crotty, S., Aubert, R.D., Glidewell, J., and Ahmed, R. (2004). Tracking human antigen-specific memory B cells: a sensitive and generalized ELISPOT system. J. Immunol. Methods 286, 111-122 https://doi.org/10.1016/j.jim.2003.12.015
  26. de Lalla, F., Rinaldi, E., Santoro, D., and Pravettoni, G. (1988). Immune response to hepatitis B vaccine given at different injection sites and by different routes: a controlled randomized study. Eur. J. Epidemiol. 4, 256-258 https://doi.org/10.1007/BF00144763
  27. Deml, L., Schirmbeck, R., Reimann, J., Wolf, H., and Wagner, R. (1997). Recombinant human immunodeficiency Pr55gag viruslike particles presenting chimeric envelope glycoproteins induce cytotoxic T-cells and neutralizing antibodies. Virology 235, 26-39 https://doi.org/10.1006/viro.1997.8668
  28. Deml, L., Speth, C., Dierich, M. P., Wolf, H., and Wagner, R. (2005). Recombinant HIV-1 $Pr55^{gag}$ virus-like particles: potent stimulators of innate and acquired immune responses. Mol. Immunol. 42, 259-277 https://doi.org/10.1016/j.molimm.2004.06.028
  29. den Dunnen, J., Gringhuis, S.I., and Geijtenbeek, T.B. (2008). Innate signaling by the C-type lectin DC-SIGN dictates immune responses. Cancer Immunol. Immunother. DOI 10.1007/s00262-008-0615-1
  30. Deng, L., Dai, P., Parikh, T., Cao, H., Bhoj, V., Sun, Q., Chen, Z., Merghoub, T., Houghton, A., and Shuman, S. (2008). Vaccinia virus subverts a mitochondrial antiviral signaling proteindependent innate immune response in keratinocytes through its double-stranded RNA binding protein, E3. J. Virol. 82, 10735-10746 https://doi.org/10.1128/JVI.01305-08
  31. Diebold, S.S. (2008). Recognition of viral single-stranded RNA by Toll-like receptors. Adv. Drug Deliv. Rev. 60, 813-823 https://doi.org/10.1016/j.addr.2007.11.004
  32. Dubois, B., Massacrier, C., and Caux, C. (2001). Selective attraction of naive and memory B cells by dendritic cells. J. Leukoc. Biol. 70, 633-641
  33. Fernandez-Sesma, A., Marukian, S., Ebersole, B.J., Kaminski, D., Park, M.S., Yuen, T., Sealfon, S.C., Garcia-Sastre, A., and Moran, T.M. (2006). Influenza virus evades innate and adaptive immunity via the NS1 protein. J. Virol. 80, 6295-6304 https://doi.org/10.1128/JVI.02381-05
  34. Flehmig, B., Staedele, H., Xueref, C., Vidor, E., Zuckerman, J., and Zuckerman, A. (1997). Early appearance of neutralizing antibodies after vaccination with an inactivated hepatitis A vaccine. J. Infect. 35, 37-40 https://doi.org/10.1016/S0163-4453(97)90929-4
  35. Galarza, J.M., Latham, T., and Cupo, A. (2005). Virus-like particle (VLP) vaccine conferred complete protection against a lethal influenza virus challenge. Viral Immunol. 18, 244-251 https://doi.org/10.1089/vim.2005.18.244
  36. Gatto, D., Pfister, T., Jegerlehner, A., Martin, S.W., Kopf, M., and Bachmann, M.F. (2005). Complement receptors regulate differentiation of bone marrow plasma cell precursors expressing transcription factors Blimp-1 and XBP-1. J. Exp. Med. 201, 993-1005 https://doi.org/10.1084/jem.20042239
  37. Gavin, A.L., Hoebe, K., Duong, B., Ota, T., Martin, C., Beutler, B., and Nemazee, D. (2006). Adjuvant-enhanced antibody responses in the absence of toll-like receptor signaling. Science 314, 1936-1938 https://doi.org/10.1126/science.1135299
  38. Germain, R.N. (2004). An innately interesting decade of research in immunology. Nat. Med. 10, 1307-1320 https://doi.org/10.1038/nm1159
  39. Gewirtz, A.T., Navas, T.A., Lyons, S., Godowski, P.J., and Madara, J.L. (2001). Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J. Immunol. 167, 1882-1885 https://doi.org/10.4049/jimmunol.167.4.1882
  40. Grgacic, E.V., and Anderson, D.A. (2006). Virus-like particles: passport to immune recognition. Methods 40, 60-65 https://doi.org/10.1016/j.ymeth.2006.07.018
  41. Gururajan, M., Jacob, J., and Pulendran, B. (2007). Toll-like receptor expression and responsiveness of distinct murine splenic and mucosal B-cell subsets. PLoS ONE 2, e863 https://doi.org/10.1371/journal.pone.0000863
  42. Gustavsson, S., Kinoshita, T., and Heyman, B. (1995). Antibodies to murine complement receptor 1 and 2 can inhibit the antibody response in vivo without inhibiting T helper cell induction. J. Immunol. 154, 6524-6528
  43. Hai, R., Martinez-Sobrido, L., Fraser, K.A., Ayllon, J., Garcia-Sastre, A., and Palese, P. (2008). Influenza B virus NS1-truncated mutants: live-attenuated vaccine approach. J. Virol. 82, 10580-10590 https://doi.org/10.1128/JVI.01213-08
  44. Hebell, T., Ahearn, J.M., and Fearon, D.T. (1991). Suppression of the immune response by a soluble complement receptor of B lymphocytes. Science 254, 102-105 https://doi.org/10.1126/science.1718035
  45. Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K., et al. (2000). A Toll-like receptor recognizes bacterial DNA. Nature 408, 740-745 https://doi.org/10.1038/35047123
  46. Hoebe, K., Janssen, E., and Beutler, B. (2004). The interface between innate and adaptive immunity. Nat. Immunol. 5, 971-974 https://doi.org/10.1038/ni1004-971
  47. Honorati, M.C., Palareti, A., Dolzani, P., Busachi, C.A., Rizzoli, R., and Facchini, A. (1999). A mathematical model predicting antihepatitis B virus surface antigen (HBs) decay after vaccination against hepatitis B. Clin. Exp. Immunol. 116, 121-126 https://doi.org/10.1046/j.1365-2249.1999.00866.x
  48. Jegerlehner, A., Maurer, P., Bessa, J., Hinton, H.J., Kopf, M., and Bachmann, M.F. (2007). TLR9 signaling in B cells determines class switch recombination to IgG2a. J. Immunol. 178, 2415-2420 https://doi.org/10.4049/jimmunol.178.4.2415
  49. Kaech, S.M., Wherry, E.J., and Ahmed, R. (2002). Effector and memory T-cell differentiation: implications for vaccine development. Nat. Rev. Immunol. 2, 251-262 https://doi.org/10.1038/nri778
  50. Kalia, V., Sarkar, S., Gourley, T.S., Rouse, B.T., and Ahmed, R. (2006). Differentiation of memory B and T cells. Curr. Opin. Immunol. 18, 255-264 https://doi.org/10.1016/j.coi.2006.03.020
  51. Kang, S.M., Guo, L., Yao, Q., Skountzou, I., and Compans, R.W. (2004). Intranasal immunization with inactivated influenza virus enhances immune responses to coadministered simian-human immunodeficiency virus-like particle antigens. J. Virol. 78, 9624-9632 https://doi.org/10.1128/JVI.78.18.9624-9632.2004
  52. Kawai, T., and Akira, S. (2007). TLR signaling. Semin. Immunol. 19, 24-32 https://doi.org/10.1016/j.smim.2006.12.004
  53. Kelsoe, G. (2000). Studies of the humoral immune response. Immunol. Res. 22, 199-210 https://doi.org/10.1385/IR:22:2-3:199
  54. Khanlou, H., Sanchez, S., Babaie, M., Chien, C., Hamwi, G., Ricaurte, J.C., Stein, T., Bhatti, L., Denouden, P., and Farthing, C. (2006). The safety and efficacy of dose-sparing intradermal administration of influenza vaccine in human immunodeficiency virus-positive patients. Arch. Intern. Med. 166, 1417 https://doi.org/10.1001/archinte.166.13.1417
  55. Klaus, G.G., Pepys, M.B., Kitajima, K., and Askonas, B.A. (1979). Activation of mouse complement by different classes of mouse antibody. Immunology 38, 687-695
  56. Kopf, M., Abel, B., Gallimore, A., Carroll, M., and Bachmann, M.F. (2002). Complement component $C_{3}$ promotes T-cell priming and lung migration to control acute influenza virus infection. Nat. Med. 8, 373-378 https://doi.org/10.1038/nm0402-373
  57. Koyama, S., Ishii, K.J., Kumar, H., Tanimoto, T., Coban, C., Uematsu, S., Kawai, T., and Akira, S. (2007). Differential role of TLR- and RLR-signaling in the immune responses to influenza A virus infection and vaccination. J. Immunol. 179, 4711-4720 https://doi.org/10.4049/jimmunol.179.7.4711
  58. Kwissa, M., Kasturi, S.P., and Pulendran, B. (2007). The science of adjuvants. Expert Rev. Vaccines 6, 673-684 https://doi.org/10.1586/14760584.6.5.673
  59. Le Goffic, R., Balloy, V., Lagranderie, M., Alexopoulou, L., Escriou, N., Flavell, R., Chignard, M., and Si-Tahar, M. (2006). Detrimental contribution of the Toll-like receptor (TLR)$_{3}$ to influenza A virus-induced acute pneumonia. PLoS Pathog 2, e53 https://doi.org/10.1371/journal.ppat.0020053
  60. Lee, H.K., Dunzendorfer, S., Soldau, K., and Tobias, P.S. (2006). Double-stranded RNA-mediated TLR3 activation is enhanced by CD14. Immunity 24, 153-163 https://doi.org/10.1016/j.immuni.2005.12.012
  61. Li, Z., Jiang, Y., Jiao, P., Wang, A., Zhao, F., Tian, G., Wang, X., Yu,K., Bu, Z., and Chen, H. (2006). The NS1 gene contributes to the virulence of H5N1 avian influenza viruses. J. Virol. 80, 11115-11123 https://doi.org/10.1128/JVI.00993-06
  62. Lin, L., Gerth, A.J., and Peng, S.L. (2004). CpG DNA redirects class-switching towards 'Th1-like' Ig isotype production via TLR9 and MyD88. Eur. J. Immunol. 34, 1483-1487 https://doi.org/10.1002/eji.200324736
  63. Liu, N., Ohnishi, N., Ni, L., Akira, S., and Bacon, K.B. (2003). CpG directly induces T-bet expression and inhibits IgG1 and IgE switching in B cells. Nat. Immunol. 4, 687-693 https://doi.org/10.1038/ni941
  64. Lobue, A.D., Lindesmith, L., Yount, B., Harrington, P.R., Thompson, J.M., Johnston, R.E., Moe, C.L., and Baric, R.S. (2006). Multivalent norovirus vaccines induce strong mucosal and systemic blocking antibodies against multiple strains. Vaccine 24, 5220-5234 https://doi.org/10.1016/j.vaccine.2006.03.080
  65. Loo, Y.M., Fornek, J., Crochet, N., Bajwa, G., Perwitasari, O., Martinez- Sobrido, L., Akira, S., Gill, M.A., Garcia-Sastre, A., Katze, M.G., et al. (2008). Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J. Virol. 82, 335-345 https://doi.org/10.1128/JVI.01080-07
  66. Mansson, A., Adner, M., Hockerfelt, U., and Cardell, L.O. (2006). A distinct Toll-like receptor repertoire in human tonsillar B cells, directly activated by PamCSK, R-837 and CpG-2006 stimulation. Immunology 118, 539-548
  67. Manz, R.A., Hauser, A.E., Hiepe, F., and Radbruch, A. (2005). Maintenance of serum antibody levels. Annu. Rev. Immunol. 23, 367-386 https://doi.org/10.1146/annurev.immunol.23.021704.115723
  68. Markine-Goriaynoff, D., van der Logt, J.T., Truyens, C., Nguyen, T.D., Heessen, F.W., Bigaignon, G., Carlier, Y., and Coutelier, J.P. (2000). IFN-$\gamma$-independent IgG2a production in mice infected with viruses and parasites. Int. Immunol. 12, 223-230 https://doi.org/10.1093/intimm/12.2.223
  69. Martin, M., Michalek, S.M., and Katz, J. (2003). Role of innate immune factors in the adjuvant activity of monophosphoryl lipid A. Infect. Immun. 71, 2498-2507 https://doi.org/10.1128/IAI.71.5.2498-2507.2003
  70. McHeyzer-Williams, L.J., and McHeyzer-Williams, M.G. (2005). Antigen-specific memory B cell development. Annu. Rev. Immunol. 23, 487-513 https://doi.org/10.1146/annurev.immunol.23.021704.115732
  71. Meyer-Bahlburg, A., Khim, S., and Rawlings, D.J. (2007). B cellintrinsic TLR signals amplify but are not required for humoral immunity. J. Exp. Med. 204, 3095-3101 https://doi.org/10.1084/jem.20071250
  72. Minges Wols, H.A., Underhill, G.H., Kansas, G.S., and Witte, P.L. (2002). The role of bone marrow-derived stromal cells in the maintenance of plasma cell longevity. J. Immunol. 169, 4213-4221 https://doi.org/10.4049/jimmunol.169.8.4213
  73. Mortola, E., and Roy, P. (2004). Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system. FEBS Lett. 576, 174-178 https://doi.org/10.1016/j.febslet.2004.09.009
  74. Nemazee, D., Gavin, A., Hoebe, K., and Beutler, B. (2006). Immunology: Toll-like receptors and antibody responses. Nature 441, E4; discussion E4 https://doi.org/10.1038/nature04875
  75. Nimmerjahn, F., and Ravetch, J.V. (2005). Divergent immunoglobuling subclass activity through selective Fc receptor binding. Science 310, 1510-1512 https://doi.org/10.1126/science.1118948
  76. Ochsenbein, A.F., Pinschewer, D.D., Odermatt, B., Carroll, M.C., Hengartner, H., and Zinkernagel, R.M. (1999). Protective T cellindependent antiviral antibody responses are dependent on complement. J. Exp. Med. 190, 1165-1174 https://doi.org/10.1084/jem.190.8.1165
  77. Palese, P., Muster, T., Zheng, H., O'Neill, R., and Garcia-Sastre, A. (1999). Learning from our foes: a novel vaccine concept for influenza virus. Arch. Virol. Suppl. 15, 131-138
  78. Palucka, A.K., Laupeze, B., Aspord, C., Saito, H., Jego, G., Fay, J., Paczesny, S., Pascual, V., and Banchereau, J. (2005). Immunotherapy via dendritic cells. Adv. Exp. Med. Biol. 560, 105-114 https://doi.org/10.1007/0-387-24180-9_14
  79. Pasare, C., and Medzhitov, R. (2004). Toll-like receptors: linking innate and adaptive immunity. Microbes Infect. 6, 1382-1387 https://doi.org/10.1016/j.micinf.2004.08.018
  80. Pasare, C., and Medzhitov, R. (2005). Control of B-cell responses by Toll-like receptors. Nature 438, 364-368 https://doi.org/10.1038/nature04267
  81. Pashine, A., Valiante, N.M., and Ulmer, J.B. (2005). Targeting the innate immune response with improved vaccine adjuvants. Nat. Med. 11, S63-68 https://doi.org/10.1038/nm1210
  82. Persing, D.H., Coler, R.N., Lacy, M.J., Johnson, D.A., Baldridge, J.R., Hershberg, R.M., and Reed, S.G. (2002). Taking toll: lipid A mimetics as adjuvants and immunomodulators. Trends Microbiol. 10, S32-7 https://doi.org/10.1016/S0966-842X(02)02426-5
  83. Pichichero, M.E., Voloshen, T., and Passador, S. (1999). Kinetics of booster responses to Haemophilus influenzae type B conjugate after combined diphtheria-tetanus-acelluar pertussis-Haemophilus influenzae type b vaccination in infants. Pediatr. Infect. Dis. J. 18, 1106-1108 https://doi.org/10.1097/00006454-199912000-00019
  84. Plotkin, S.A. (2005). Vaccines: past, present and future. Nat. Med. 11, S5-11 https://doi.org/10.1038/nm1209
  85. Pulendran, B. (2004). Modulating vaccine responses with dendritic cells and Toll-like receptors. Immunol. Rev. 199, 227-250 https://doi.org/10.1111/j.0105-2896.2004.00144.x
  86. Pulendran, B., and Ahmed, R. (2006). Translating innate immunity into immunological memory: implications for vaccine development. Cell 124, 849-863 https://doi.org/10.1016/j.cell.2006.02.019
  87. Pushko, P., Tumpey, T.M., Bu, F., Knell, J., Robinson, R., and Smith, G. (2005). Influenza virus-like particles comprised of the HA, NA, and M1 proteins of H9N2 influenza virus induce protective immune responses in BALB/c mice. Vaccine 23, 5751-5759 https://doi.org/10.1016/j.vaccine.2005.07.098
  88. Quan, F.S., Huang, C., Compans, R.W., and Kang, S.M. (2007a). Virus-like particle vaccine induces protective immunity against homologous and heterologous strains of influenza virus. J. Virol. 81, 3514-3524 https://doi.org/10.1128/JVI.02052-06
  89. Quan, F.S., Sailaja, G., Skountzou, I., Huang, C., Vzorov, A., Compans, R.W., and Kang, S.M. (2007b). Immunogenicity of viruslike particles containing modified human immunodeficiency virus envelope proteins. Vaccine 25, 3841-3850 https://doi.org/10.1016/j.vaccine.2007.01.107
  90. Quan, F.S., Compans, R.W., Nguyen, H.H., and Kang, S.M. (2008a). Induction of heterosubtypic immunity to influenza virus by intranasal immunization. J. Virol. 82, 1350-1359 https://doi.org/10.1128/JVI.01615-07
  91. Quan, F.S., Steinhauer, D., Huang, C., Ross, T.M., Compans, R.W., and Kang, S.M. (2008b). A bivalent influenza VLP vaccine confers complete inhibition of virus replication in lungs. Vaccine 26, 3352-3361 https://doi.org/10.1016/j.vaccine.2008.03.055
  92. Querec, T., Bennouna, S., Alkan, S., Laouar, Y., Gorden, K., Flavell, R., Akira, S., Ahmed, R., and Pulendran, B. (2006). Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. J. Exp. Med. 203, 413-424 https://doi.org/10.1084/jem.20051720
  93. Rappuoli, R. (2004). From Pasteur to genomics: progress and challenges in infectious diseases. Nat. Med. 10, 1177-1185 https://doi.org/10.1038/nm1129
  94. Rappuoli, R. (2007). Bridging the knowledge gaps in vaccine design. Nat. Biotechnol. 25, 1361-1366 https://doi.org/10.1038/nbt1207-1361
  95. Reif, K., Ekland, E.H., Ohl, L., Nakano, H., Lipp, M., Forster, R., and Cyster, J.G. (2002). Balanced responsiveness to chemoattractants from adjacent zones determines B-cell position. Nature 416, 94-99 https://doi.org/10.1038/416094a
  96. Ridderstad, A., and Tarlinton, D.M. (1998). Kinetics of establishing the memory B cell population as revealed by CD38 expression. J. Immunol. 160, 4688-4695
  97. Sailaja, G., Skountzou, I., Quan, F.S., Compans, R.W., and Kang, S.M. (2007). Human immunodeficiency virus-like particles activate multiple types of immune cells. Virology 362, 331-341 https://doi.org/10.1016/j.virol.2006.12.014
  98. Sancho, D., Gomez, M., and Sanchez-Madrid, F. (2005). CD69 is an immunoregulatory molecule induced following activation. Trends Immunol. 26, 136-140 https://doi.org/10.1016/j.it.2004.12.006
  99. Schnare, M., Barton, G.M., Holt, A.C., Takeda, K., Akira, S., and Medzhitov, R. (2001). Toll-like receptors control activation of adaptive immune responses. Nat. Immunol. 2, 947-950 https://doi.org/10.1038/ni712
  100. Shapiro-Shelef, M., and Calame, K. (2005). Regulation of plasmacell development. Nat. Rev. Immunol. 5, 230-242 https://doi.org/10.1038/nri1572
  101. Shin, D., Yang, C.S., Lee, J.Y., Lee, S.J., Choi, H.H., Lee, H.M., Yuk, J.M., Harding, C.V., and Jo, E.K. (2008). Mycobacterium tuberculosis lipoprotein-induced association of TLR2 with protein kinase C $\zeta$ in lipid rafts contributes to reactive oxygen species-dependent inflammatory signalling in macrophages. Cell Microbiol. 10, 1893-1905 https://doi.org/10.1111/j.1462-5822.2008.01179.x
  102. Shinall, S.M., Gonzalez-Fernandez, M., Noelle, R.J., and Waldschmidt, T.J. (2000). Identification of murine germinal center B cell subsets defined by the expression of surface isotypes and differentiation antigens. J. Immunol. 164, 5729-5738 https://doi.org/10.4049/jimmunol.164.11.5729
  103. Sun, Y., Carrion, R., Jr., Ye, L., Wen, Z., Ro, Y.T., Brasky, K., Ticer, A.E., Schwegler, E.E., Patterson, J.L., Compans, R.W., et al. (2009). Protection against lethal challenge by Ebola virus-like particles produced in insect cells. Virology 538, 12-21 https://doi.org/10.1016/j.virol.2008.09.020
  104. Takeda, K., and Akira, S. (2004). TLR signaling pathways. Semin. Immunol. 16, 3-9 https://doi.org/10.1016/j.smim.2003.10.003
  105. Takeshita, F., Kobiyama, K., Miyawaki, A., Jounai, N., and Okuda, K. (2008). The non-canonical role of Atg family members as suppressors of innate antiviral immune signaling. Autophagy 4, 67-69 https://doi.org/10.4161/auto.5055
  106. Talon, J., Salvatore, M., O'Neill, R. E., Nakaya, Y., Zheng, H., Muster, T., Garcia-Sastre, A., and Palese, P. (2000). Influenza A and B viruses expressing altered NS1 proteins: A vaccine approach. Proc. Natl. Acad. Sci. USA 97, 4309-4314 https://doi.org/10.1073/pnas.070525997
  107. Tiberio, L., Fletcher, L., Eldridge, J.H., and Duncan, D.D. (2004). Host factors impacting the innate response in humans to the candidate adjuvants RC529 and monophosphoryl lipid A. Vaccine 22, 1515-1523 https://doi.org/10.1016/j.vaccine.2003.10.019
  108. Unterholzner, L., and Bowie, A.G. (2008). The interplay between viruses and innate immune signaling: recent insights and therapeutic opportunities. Biochem. Pharmacol. 75, 589-602 https://doi.org/10.1016/j.bcp.2007.07.043
  109. Van Damme, P., Oosterhuis-Kafeja, F., Van der Wielen, M., Almagor, Y., Sharon, O., and Levin, Y. (2009). Safety and efficacy of a novel microneedle device for dose sparing intradermal influenza vaccination in healthy adults. Vaccine 27, 454-459 https://doi.org/10.1016/j.vaccine.2008.10.077
  110. van der Sluijs, K.F., van Elden, L., Nijhuis, M., Schuurman, R., Florquin, S., Jansen, H.M., Lutter, R., and van der Poll, T. (2003). Toll-like receptor 4 is not involved in host defense against respiratory tract infection with Sendai virus. Immunol. Lett. 89, 201-206 https://doi.org/10.1016/S0165-2478(03)00138-X
  111. van Duin, D., Medzhitov, R., and Shaw, A.C. (2006). Triggering TLR signaling in vaccination. Trends Immunol. 27, 49-55 https://doi.org/10.1016/j.it.2005.11.005
  112. Van Herck, K., Beutels, P., Van Damme, P., Beutels, M., Van den Dries, J., Briantais, P., and Vidor, E. (2000). Mathematical models for assessment of long-term persistence of antibodies after vaccination with two inactivated hepatitis A vaccines. J. Med. Virol. 60, 1-7 https://doi.org/10.1002/(SICI)1096-9071(200001)60:1<1::AID-JMV1>3.0.CO;2-H
  113. Vinuesa, C.G., Tangye, S.G., Moser, B., and Mackay, C.R. (2005). Follicular B helper T cells in antibody responses and autoimmunity. Nat. Rev. Immunol. 5, 853-865 https://doi.org/10.1038/nri1714
  114. Warfield, K.L., Swenson, D.L., Demmin, G., and Bavari, S. (2005). Filovirus-like particles as vaccines and discovery tools. Expert Rev. Vaccines 4, 429-440 https://doi.org/10.1586/14760584.4.3.429

Cited by

  1. Systems biology applied to vaccine and immunotherapy development vol.5, pp.None, 2009, https://doi.org/10.1186/1752-0509-5-146
  2. Virus-like particles as universal influenza vaccines vol.11, pp.8, 2009, https://doi.org/10.1586/erv.12.70
  3. Protective efficacy of crude virus‐like particle vaccine against HPAI H5N1 in chickens and its application on DIVA strategy vol.7, pp.3, 2013, https://doi.org/10.1111/j.1750-2659.2012.00396.x
  4. H9N2 avian influenza virus in Korea: evolution and vaccination vol.2, pp.1, 2009, https://doi.org/10.7774/cevr.2013.2.1.26
  5. Next-Generation Sequencing-Based Transcriptome Analysis of Helicoverpa armigera Larvae Immune-Primed with Photorhabdus luminescens TT01 vol.8, pp.11, 2009, https://doi.org/10.1371/journal.pone.0080146
  6. A Multiantigenic DNA Vaccine That Induces Broad Hepatitis C Virus-Specific T-Cell Responses in Mice vol.89, pp.15, 2009, https://doi.org/10.1128/jvi.00803-15
  7. Systemic and Mucosal B and T Cell Responses Upon Mucosal Vaccination of Teleost Fish vol.11, pp.None, 2021, https://doi.org/10.3389/fimmu.2020.622377
  8. CD4+ T Cells of Prostate Cancer Patients Have Decreased Immune Responses to Antigens Derived From SARS-CoV-2 Spike Glycoprotein vol.12, pp.None, 2021, https://doi.org/10.3389/fimmu.2021.629102
  9. Exploration of Pattern Recognition Receptor Agonists as Candidate Adjuvants vol.11, pp.None, 2021, https://doi.org/10.3389/fcimb.2021.745016
  10. Construction and Characterization of an Aeromonas hydrophila Multi-Gene Deletion Strain and Evaluation of Its Potential as a Live-Attenuated Vaccine in Grass Carp vol.9, pp.5, 2009, https://doi.org/10.3390/vaccines9050451
  11. Evolution of Cancer Vaccines-Challenges, Achievements, and Future Directions vol.9, pp.5, 2009, https://doi.org/10.3390/vaccines9050535
  12. Use of Protamine in Nanopharmaceuticals-A Review vol.11, pp.6, 2009, https://doi.org/10.3390/nano11061508