• Title/Summary/Keyword: TLD홀더

Search Result 5, Processing Time 0.015 seconds

LiF TLD in TLD Holder for In Vivo Dosimetry (생체 내 선량측정을 위한, TLD홀더에 넣은 LiF TLD)

  • Kim Sookil;Loh John J.K.;Min Byungnim
    • Radiation Oncology Journal
    • /
    • v.19 no.3
    • /
    • pp.293-299
    • /
    • 2001
  • Prupose : LiF TLD has a problem to be used in vivo dosimetry because of the toxic property of LiF. The aim of this study is to develop new dosimeter with LiF TLD to be used in vivo dosimetry. Materials and methods : We designed and manufactured the teflon box(here after TLD holder) to put TLD in. The external size of TLD holder is $4\times4\times1\;mm^3$ To estimate the effect of TLD holder on TLD response for radiation, the linearity of TLD response to nominal dose were measured for TLD in TLD holder. Measurement were peformed in the 10 MV x-ray beam with LiF TLD using a solid water phantom at SSD of 100 cm. Percent Depth Dose (PDD) and Tissue-Maximum Ratio (TMR) with varying phantom thickness on TLD were measured to find the effect of TLD holder on the dose coefficient used for dose calculation in radiation therapy. Results : The linearity of response of TLD in TLD holder to the nominal dose was improved than TLD only used as dosimeter And in various measurement conditions, it makes a marginnal difference between TLD in TLD holder and TLD only in their responses. Conclusion : It was proven that the TLD in TLD holder as a new dosimetry could be used in vivo dosimetry.

  • PDF

선형가속기 출력 점검에 사용하는 열형광선량계의 에너지 의존도 평가

  • Park, Seong-Ho;Gang, Se-Gwon;Jo, Byeong-Cheol;Lee, Byeong-Cheol;Kim, Gwi-Ya;Jeong, Hui-Gyo
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.33-35
    • /
    • 2004
  • 방사선치료를 위한 고에너지 광자선의 품질관리를 위해 사용하는 TLD의 광자선 선질에 대한 에너지 의존도를 몬테카를로 모사법을 사용하여 평가하였다. IAEA 선량보증사업에 이용되는 LiF TLD 및 홀더를 EGS4기반의 사용자 코드인 DOSIMETER 와 MCNP4C 몬테카를로 코드를 사용하여 기하학구조를 구성하고, Co, 4, 6,10 밑 15 MV 광자선을 시뮬레이션하였다. DOSIMETER계산 결과를 통해 TLD의 에너지 보정인자가 실험 데이터와 일치함을 확인할 수 있었으며, 이와 별도로 캡슐에 의한 교란량도 무시할 수 없음을 발견하였다.

  • PDF

Dose Verification Using Pelvic Phantom in High Dose Rate (HDR) Brachytherapy (자궁경부암용 팬톰을 이용한 HDR (High dose rate) 근접치료의 선량 평가)

  • 장지나;허순녕;김회남;윤세철;최보영;이형구;서태석
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.15-19
    • /
    • 2003
  • High dose rate (HDR) brachytherapy for treating a cervix carcinoma has become popular, because it eliminates many of the problems associated with conventional brachytherapy. In order to improve the clinical effectiveness with HDR brachytherapy, a dose calculation algorithm, optimization procedures, and image registrations need to be verified by comparing the dose distributions from a planning computer and those from a phantom. In this study, the phantom was fabricated in order to verify the absolute doses and the relative dose distributions. The measured doses from the phantom were then compared with the treatment planning system for the dose verification. The phantom needs to be designed such that the dose distributions can be quantitatively evaluated by utilizing the dosimeters with a high spatial resolution. Therefore, the small size of the thermoluminescent dosimeter (TLD) chips with a dimension of <1/8"and film dosimetry with a spatial resolution of <1mm used to measure the radiation dosages in the phantom. The phantom called a pelvic phantom was made from water and the tissue-equivalent acrylic plates. In order to firmly hold the HDR applicators in the water phantom, the applicators were inserted into the grooves of the applicator holder. The dose distributions around the applicators, such as Point A and B, were measured by placing a series of TLD chips (TLD-to-TLD distance: 5mm) in the three TLD holders, and placing three verification films in the orthogonal planes. This study used a Nucletron Plato treatment planning system and a Microselectron Ir-192 source unit. The results showed good agreement between the treatment plan and measurement. The comparisons of the absolute dose showed agreement within $\pm$4.0 % of the dose at point A and B, and the bladder and rectum point. In addition, the relative dose distributions by film dosimetry and those calculated by the planning computer show good agreement. This pelvic phantom could be a useful to verify the dose calculation algorithm and the accuracy of the image localization algorithm in the high dose rate (HDR) planning computer. The dose verification with film dosimetry and TLD as quality assurance (QA) tools are currently being undertaken in the Catholic University, Seoul, Korea.

  • PDF

KFDA TLD Dose Quality Audit and Measurement Uncertainty (식품의약품안전청의 치료방사선 선량보증과 측정불확도)

  • Jeong, Hee-Kyo;Lee, Hyun-Ku;Kim, Gwe-Ya;Yang, Hyun-Kyu;Lim, Chun-Il
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.153-156
    • /
    • 2004
  • Korea Food and Drug Administration(KFDA) has peformed the calibration of therapy level dosimeters for Co-60 radiation since 1979. The reference standard ionization chamber has been calibrated at BIPM in France. The uncertainty on the KFDA calibration coefficients is 0.9 %(k=2) for air kerma and absorbed dose to water. Since 1999 a national quality audit program for ensuring dosimetry accuracy in Korea radiotherapy centers has been performed by the KFDA. The uncertainty associated with the determination of the absorbed dose to water from the TLD readings for high energy x-ray is 1.6 %(k=1). The correction factors for energy, non-linearity dose response, and TLD holder are used in the dose determination. Agreement between the user stated dose and KFDA measured dose within ${\pm}$ 5 % is considered acceptable. KFDA TLD postal dose quality audit program was peformed for 71 beam qualities of 53 domestic radiotherapy centers in 2003. The results for quality assurance showed that 63 out of 71 beam qualifies (89 %) satisfied the acceptance limit. The second audit was carried out for the centers outside the limit and ail of them have been corrected.

  • PDF

Quality Assurance Program of Electron Beams Using Thermoluminescence Dosimetry (열형광선량계를 이용한 전자선 품질보증 프로그램에 관한 연구)

  • Rah Jeong-Eun;Kim Gwe-Ya;Jeong Hee-Kyo;Shin Dong-Oh;Suh Tae-Suk
    • Progress in Medical Physics
    • /
    • v.16 no.2
    • /
    • pp.62-69
    • /
    • 2005
  • The purpose of this study has been performed to investigate the possibility of external audit program using thermoluminescence dosimetry for electron beam in korea. The TLD system consists of LiF powder, type TLD-700 read with a PCL 3 reader. In order to determine a calibration coefficient of the TLD system, the reference dosimeters are irradiated to 2 Gy in a $^{60}CO$ beam at the KFDA The irradiation is performed under reference conditions is water phantom using the IAEA standard holder for TLD of electron beam. The energy correction factor is determined for LiF powder irradiated of dose to water 2 Gy in electron beams of 6, 9, 12, 16 and 20 MeV (Varian CL 2100C). The dose is determined according to the IAEA TRS-398 and by measurement with a PTW Roos type plane-parallel chamber. The TLD for each electron energy are positioned in water at reference depth. In this study, to verify of the accuracy of dose determination by the TLD system are performed through a 'blind' TLD irradiation. The results of blind test are $2.98\%,\;3.39\%\;and\;0.01\%(1\sigma)$ at 9, 16, 20 MeV, respectively. The value generally agrees within the acceptance level of $5\%$ for electron beam. The results of this study prove the possibility of the TLD quality assurance program for electron beams. It has contributed to the improvement of clinical electron dosimetry in radiotherapy centers.

  • PDF