• Title/Summary/Keyword: THz time-domain spectroscopy

Search Result 58, Processing Time 0.028 seconds

THz Optical Properties of Pr3+-Doped Selenide Glasses (Pr3+ 도핑된 셀레나이드 유리의 테라헤르츠 광학 특성)

  • Kang, Seung Beom;Chung, Dong Chul;Kwak, Min Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.11
    • /
    • pp.745-750
    • /
    • 2017
  • Terahertz time-domain spectroscopy has been used to study the optical properties of $Pr^{3+}-doped$ selenide glasses. The complex refractive indexes of $Pr^{3+}-selenide$ glasses were measured in a frequency range from 0.3 to 1.5 THz. The real and imaginary refractive indexes increased with increasing frequency and $Pr^{3+}$ ion concentration. The obtained result indicated that the phonon modes of the $Pr^{3+}-doped$ selenide glasses shift to lower frequencies with the concentration of $Pr^{3+}$ ions. The theory of far-infrared absorption in amorphous materials was used to analyze the results. The measured data showed that the disorder-induced terahertz absorption increased with increasing $Pr^{3+}$ ion concentration.

Terahertz transmission through femtosecond-machined metal structures

  • Lee, J.U.;Seo, M.;Kim, D.S.;Jeoung, S.C.;Park, Q-Han
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2005.06a
    • /
    • pp.102-103
    • /
    • 2005
  • Using THz time-domain spectroscopy, we study plasmonic band gaps in periodic metal arrays of slits. Femtosecnd machining system guarantees good quality sub millimeter structures for THz spectroscopy. Fabry-Perot effect enhances the transmission when the two resonances cross but does not alter the surface plasmon peak positions.

  • PDF

A Study on the Photo-Degradation Properties of the Spiropyran Using THz-TDS (테라헤르츠 시간 영역 분광법을 이용한 스피로파이란의 광 퇴화 특성 연구)

  • Bang, Jin-Hyuk;Park, Myoung-Hwan;Ryu, Han-Cheol
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.1
    • /
    • pp.28-33
    • /
    • 2016
  • The spiropyran is a typical material having photodegradation properties in the process of photochromism. The spiropyran has been utilized in various applications such as optical switch, optical memories, and biosensor because of its remarkable stability, fast responsive time, stronger color change, and photo-induced controllability. However, the spriropyran is photodegraded by the repetitive optical irradiation. The photodegradation of spiropyran have been investigated by using UV-Visible spectroscopy, nuclear magnetic resonance (NMR), and Raman spectroscopy. Herein, the properties of spiropyran were characterized by using terahertz time-domain spectroscopy (THz-TDS) in the terahertz frequency region. In terahertz region, the measured absorbance of spiropyran was increased due to the photodegradation induced by the repetitive UV irradiation. The absorbance tendency of spiropyran in the terahertz frequency region was compared with that in the visible region, and they were completely opposite to each other.

THz Photonics and the meaurement of dielectric and optical properties of thin films (테라헬츠 포토닉스와 여러 가지 나노박막의 유전 및 장학적 특성의 측정)

  • Lee Gwang-Su
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.172-173
    • /
    • 2002
  • As feature sizes of circuits and devices approach 100 m and chip frequencies climb into the upper gigahertz to terahertz range, it becomes increasingly important to have a convenient method of characterizing properties of thin dielectric films in the GHz to THz frequency range [1]. To measure the dielectric and optical properties of materials at THz frequency, a TH2 time-domain spectroscopy has been utilized during past decade. (중략)

  • PDF

Characterization of Doped Silicon from 0.1 to 2.5 THz Using Multiple Reflection

  • Jeon, Tae-In
    • Journal of the Optical Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.10-14
    • /
    • 1999
  • Via THz Time domain spectroscopy, the characterization of high conductive n-type, 1.31Ω cm silicon can be measured by directly analyzing the multiple reflections using Fabry-Perot theory. The magnitude and phase difference of total transmission show good agreement between theoretical and experimental values over a 2.5 THz frequency range with complex index of refraction and power absorption. The measured absorption and dispersion are strongly frequency-dependent, and all of the results are well fit by a Cole-Davidson type distribution.

Terahertz Frequency Spreading Filter via One-dimensional Dielectric Multilayer Structures

  • Yi, Min-Woo;Kim, Young-Chan;Yee, Dae-Su;Ahn, Jae-Wook
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.398-402
    • /
    • 2009
  • We present a method of using one-dimensional dielectric multilayer structures for designing terahertz frequency spreading filters. The interference of terahertz pulses in these structures composed of alternating weak and strong refractive materials allows design of well-separated THz frequency components within a modulation-limited THz spectral envelope. The design characteristics of these coarse THz combs are limited by the saturation effect and also by the deformation of the THz pulse time-traveling within the structure. The details of the designed THz waveform synthesis from these THz multilayer spectral filters are verified by experiments using time-domain terahertz pulsed spectroscopy.

Perspectives on THz Time Domain Spectroscopy

  • Cheville, R.Alan
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.34-52
    • /
    • 2004
  • Over the past decade the experimental technique of THz time domain spectroscopy (㎔- TDS) has proved to be a versatile method for investigating a wide range of phenomena in the ㎔ or far infrared spectral region from 100 ㎓ to 5 ㎔. This paper reviews some recent results of the Ultrafast ㎔ Research Group at Oklahoma State University using ㎔-TDS as a characterization tool. The experimental technique is described along with recent results on ㎔ beam propagation and how ㎔ beam profiles arise from propagation of pulse fronts along caustics. To illustrate how spatio-temporal electric field measurements can determine material properties over a wide spectral range, propagation of ㎔ pulses through systems exhibiting frustrated total internal reflection (FTIR) are reviewed. Finally two potential metrology applications of ㎔-TDS are discussed, thin film characterization and non-destructive evaluation of ceramics. Although ㎔-TDS has been confined to the research laboratory, the focus on application may stimulate the adoption of ㎔- TDS for industrial or metrology applications.

The Electrical and Optical Characteristics of Silica Sand by Terahertz Electromagnetic Pulses (테라헤르츠 전자기 펄스를 이용한 이산화규소의 전기적 광학적 특성)

  • 전태인
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.3
    • /
    • pp.202-206
    • /
    • 2001
  • Using THz time-domain spectroscopy (THz-TDS), the power absorption, the index of refraction, and the real conductivity of silica sand are measured from 0.1[Thz] to 0.5[Thz] frequency range. It is impossible to measure the characterization of the silica sand by simple electrical measurements using mechanical contacts, e.g., Hall effect or four-point probe measurements. However, the THz-TDS technique can measure not only electrical but also optical characterization of he sample. Also this technique can measure frequency dependent results. Especially, the real conductivity was increased according to THz frequency. This is unusual material compare with metal and semiconductor materials; the measured real conductivity are not followed by the simple Drude theory.

  • PDF

Quantitative Label-free Terahertz Sensing of Transdermal Nicotine Delivered to Human Skin

  • Lee, Gyuseok;Namkung, Ho;Do, Youngwoong;Lee, Soonsung;Kang, Hyeona;Kim, Jin-Woo;Han, Haewook
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.368-372
    • /
    • 2020
  • We report the terahertz time-domain spectroscopy (THz-TDS) of transdermal drug delivery in human skin. The time evolution of transdermal nicotine delivery in nicotine patches was assessed by detecting the transmission coefficient of sub-picosecond THz pulses and using a semi-analytic model based on the single-layer effective medium approximation. Using commercial nicotine patches (Nicoderm CQ®, 7 mg/24 h), THz transmission coefficients were measured to quantitatively analyze the cumulative amounts of nicotine released from the patches in the absence of their detailed specifications, including multilayer structures and optical properties at THz frequencies. The results agreed well with measurements by conventional in vitro and in vivo methods, using a diffusion cell with high-performance liquid chromatography and blood sampling respectively. Our study revealed the ability of the THz-TDS method to be an effective alternative to existing methods for noninvasive and label-free assessments of transdermal drug delivery, showing its high promise for biomedical, pharmaceutical, and cosmetic applications.