• Title/Summary/Keyword: THz time-domain spectroscopy

Search Result 58, Processing Time 0.044 seconds

The Conductivity of Silica Sand by Terahertz Electromagnetic Pulses (테라헤르츠 영역에서 분말 이산화규소의 도전률 측정에 관한 연구)

  • 전태인;김근주
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.303-306
    • /
    • 2001
  • Using THz time-domain spectroscopy (THz-TDS), the power absorption and the real conductivity of silica sand are measured terahertz frequency range. It is impossible to measure the characterization of the silica sand by simple electrical measurements using mechanical contacts, e.g., Hail effect or four-point probe measurements. However, the THz-TDS technique can measure not only electrical but also optical characterization of the sample. Also this technique can measure frequency dependent results. Especially, the real conductivity was increased according to THz frequency this is unusual material compare with metal and semiconductor materials; the measured real conductivity are not followed by the simple Drude theory.

  • PDF

Compound Explosives Detection and Component Analysis via Terahertz Time-Domain Spectroscopy

  • Choi, Jindoo;Ryu, Sung Yoon;Kwon, Won Sik;Kim, Kyung-Soo;Kim, Soohyun
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.454-460
    • /
    • 2013
  • We present qualitative and quantitative component analyses on compound explosives via Terahertz time-domain spectroscopy (THz-TDS) based on a combination of wavelet thresholding and wavelength selection. Despite its importance, the field of signal processing of THz signals of compound plastic explosives is relatively unexplored. In this paper, experiment results from explosives Composition B-3 and Pentolite are newly presented, suggesting a novel signal processing procedure for in situ compound explosives detection. The proposed signal processing method demonstrates effective component analysis even in noisy and humid environments, showing significant decrease in component concentration percentage error of approximately 22.7% for Composition B-3 and 48.8% for Pentolite.

Characterization of Thickness and Electrical Properties of Ni-Cr Thin Films via Terahertz Time-domain Spectroscopy

  • Sunghun Kim;Inhee Maeng;Hyeon Sang Bark;Jungsup Byun;Jae Hun, Na;Seho Kim;Myeong Suk Yim;Byung-Youl Cha;Youngbin Ji;Seung Jae Oh
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.569-573
    • /
    • 2023
  • We utilized terahertz time-domain spectroscopy (THz-TDS) to measure the thickness and electrical properties of nickel-chromium (Ni-Cr) films. This technique not only aligns well with traditional methods, such as haze-meter and transmission-densitometer measurements, but it also reveals the electrical properties and thickness of films down to a few tens of nanometers. The complex conductivity of the Ni-Cr thin films was extracted using the Tinkham formula. The experimental values closely aligned with the Drude model, indicating the reliability of our Ni-Cr film's electrical and optical constants. The thickness of Ni-Cr was estimated using the complex conductivity. These findings emphasize the potential of THz-TDS in quality control of metallic nanofilms, pointing toward an efficient and nondestructive test (NDT) for such analyses.

Modeling of THz Frequency Spectrum via Optical Rectification in THz Time Domain Spectroscopy (테라헤르츠 시간 영역 분광의 광정류시 발생하는 테라헤르츠 스펙트럼 모델링)

  • Lee, Kang-Hee;Yi, Min-Woo;Ahn, Jea-Wook
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.119-124
    • /
    • 2008
  • In recent years, gradually increasing interest has been directed to the use of terahertz technology in nondestructive testing and non-invasive measurements, and terahertz time domain spectroscopy (THz-TDS) has become a key technology in such applications. This paper deals with the terahertz pulse generation from cadmium telluride via optical rectification process of femto-second infrared laser pulses. The measured terahertz spectrum is compared with the result of model calculation based on space-time domain nonlinear Maxwell equations for coherent frequency mixing process. The propagation process of terahertz and infra-red pulses in the material as well as the surface interference and free space diffraction effects are also considered. The experimental results are in good agreements with the calculated spectrum.

Terahertz Non-destructive Testing Technology for Industrial Applications (산업용 테라헤르츠 비파괴 검사 기술)

  • Lee, E.S.;Moon, K.;Lee, I.M.;Park, D.W.;Choi, D.H.;Shin, J.H.;Kim, H.S.;Choi, D.H.;Park, K.H.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.3
    • /
    • pp.59-69
    • /
    • 2018
  • Terahertz (THz) imaging and spectroscopy have been developed as non-destructive testing methods for various industrial applications. However, they have not been widely adopted in real applications owing to a high system price and the large size of conventional THz time-domain spectroscopy systems, which are based on ultrashort optical pulse lasers. Recently, various types of compact THz emitters and detectors have become available. As a result, THz non-destructive test (NDT) systems have become viable solutions. Herein, we briefly review the recent advances in THz NDT techniques adopting continuous-wave THz systems, including our recent results of a THz-based waterproof test system and an electrical connection inspection system for car manufacturing.

High-precision THz Dielectric Spectroscopy of Tris-HCl Buffer

  • Lee, Soonsung;Kang, Hyeona;Do, Youngwoong;Lee, Gyuseok;Kim, Jinwoo;Han, Haewook
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.431-434
    • /
    • 2016
  • Tris-HCl buffer solution is extensively used in biochemistry and molecular biology to maintain a stable pH for biomolecules such as nucleic acids and proteins. Here we report on the high-precision THz dielectric spectroscopy of a 10 mM Tris-HCl buffer. Using a double Debye model, including conductivity of ionic species, we measured the complex dielectric functions of Tris-HCl buffer. The fast relaxation time of water molecules in Tris-HCl buffer is ~20% longer than that in pure water while the slow relaxation time changes little. This means that the reorientation dynamics of Tris-HCl buffer with such a low Tris concentration is quite different from that of pure water.

Spectroscopic Characterization of 400℃ Annealed ZnxCd1-xS Thin Films (400℃ 열처리한 삼원화합물 ZnxCd1-xS 박막의 분광학적 특성 연구)

  • Kang, Kwang-Yong;Lee, Seung-Hwan;Lee, Nam-Kwon;Lee, Jeong-Ju;Yu, Yun-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.1
    • /
    • pp.101-112
    • /
    • 2015
  • II~VI compound semiconductors, $Zn_xCd_{1-x}S$ thin films have been synthesized onto indium-tin-oxide(ITO) coated glass substrates using thermal evaporation technique. The composition ratio x($0{\leq}x{\leq}1$) was varied to fabricate different kinds of $Zn_xCd_{1-x}S$ thin films including CdS(x=0) and ZnS(x=1) thin films. Then, the deposited thin films were thermally annealed at $400^{\circ}C$ to enhance their crystallinity. The chemical composition and electronic structure of films were investigated by using X-ray photoelectron spectroscopy(XPS). The optical energy gaps of the samples were determined by ultra violet-visible-near infrared(UV-Vis-NIR) spectroscopy and were found to vary in the range of 2.44 to 3.98 eV when x changes from 0 to 1. Finally, we measured the THz characteristics of the $Zn_xCd_{1-x}S$ thin films using THz-TDS(time domain spectroscopy) system to identify the capability for electronic and optical devices in THz region.

Detection of Explosive RDX using Parallel Plate Waveguide THz-TDS (평행판 도파관 THz 분광을 이용한 폭발물 RDX 검출)

  • Yoo, Byung Hwa;Chung, Dong Chul;Kang, Seung Beom;Kwak, Min Hwan;Kang, Gwang-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1939-1943
    • /
    • 2012
  • In this paper we presented the detection of the explosive material RDX using a parallel plate waveguide (PPWG) THz time domain spectroscopy (TDS). Normally the explosive materials have been characterized through identification of vibrational fingerprint spectra. Until now, most of all THz spectroscopic measurements have been made using pellet samples where disorder effects contribute to line broadening such that individual resonances merge into relatively broad absorption features. In order to avoid such disadvantages we used the technique of PPWG THz-TDS to achieve sensitive characterization of explosive material RDX. The PPWG THz-TDS used in this work well established ultrafast optoelectronic techniques to generate and detect sub-picosecond THz pulses. The explosive material was analyzed as powder layers in $112{\mu}m$ gap of metal PPWG. The thin later mass was estimated to be about $700{\mu}g$. Finally, we showed spectra of explosives from 0.2 to 2.4 THz measured using PPWG THz-TDS.

Terahertz time-domain transmission and reflection spectroscopy of niobium

  • Hong, Taeyoon;Choi, Kyujin;Park, Byoung-Cheol;Ha, Taewoo;Sim, Kyung Ik;Ha, Dong-Gwang;Chong, Yonuk;Kim, Jae Hoon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.1
    • /
    • pp.11-13
    • /
    • 2013
  • We have developed a terahertz time-domain spectroscopy (THz-TDS) system for transmission and reflection measurements of metallic thin films. Using our THz-TDS system, we studied the conventional superconductor niobium (Nb) in the normal state in the spectral range from 5 to $50cm^{-1}$. Both the real and imaginary parts of the conductivity are acquired without Kramers-Kronig analysis. Nb exhibits a nearly frequency independent real conductivity spectrum in the terahertz range, with a very small imaginary part.