DOI QR코드

DOI QR Code

Characterization of Thickness and Electrical Properties of Ni-Cr Thin Films via Terahertz Time-domain Spectroscopy

  • Sunghun Kim (Department of Biomedical Engineering, Inje University) ;
  • Inhee Maeng (YUHS-KRIBB Medical Convergence Research Institute, Yonsei University College of Medicine) ;
  • Hyeon Sang Bark (Division of Applied Photonics System Research, Advanced Photonics Research Institute, Gwangju Institute of Science and Technology) ;
  • Jungsup Byun (Gimhae Biomedical Center, Gimhae Biomedical Industry Promotion Agency) ;
  • Jae Hun, Na (Gimhae Biomedical Center, Gimhae Biomedical Industry Promotion Agency) ;
  • Seho Kim (Gimhae Biomedical Center, Gimhae Biomedical Industry Promotion Agency) ;
  • Myeong Suk Yim (Gimhae Biomedical Center, Gimhae Biomedical Industry Promotion Agency) ;
  • Byung-Youl Cha (Gimhae Biomedical Center, Gimhae Biomedical Industry Promotion Agency) ;
  • Youngbin Ji (Gimhae Biomedical Center, Gimhae Biomedical Industry Promotion Agency) ;
  • Seung Jae Oh (YUHS-KRIBB Medical Convergence Research Institute, Yonsei University College of Medicine)
  • Received : 2023.06.19
  • Accepted : 2023.07.13
  • Published : 2023.10.25

Abstract

We utilized terahertz time-domain spectroscopy (THz-TDS) to measure the thickness and electrical properties of nickel-chromium (Ni-Cr) films. This technique not only aligns well with traditional methods, such as haze-meter and transmission-densitometer measurements, but it also reveals the electrical properties and thickness of films down to a few tens of nanometers. The complex conductivity of the Ni-Cr thin films was extracted using the Tinkham formula. The experimental values closely aligned with the Drude model, indicating the reliability of our Ni-Cr film's electrical and optical constants. The thickness of Ni-Cr was estimated using the complex conductivity. These findings emphasize the potential of THz-TDS in quality control of metallic nanofilms, pointing toward an efficient and nondestructive test (NDT) for such analyses.

Keywords

Acknowledgement

Institute of Information & Communications Technology Planning & Evaluation (IITP) grant, funded by the Korea government (MSIT) (Grant No. 2022-0-01044, Development of terahertz wave-based real-time intelligent brain tumor diagnosis system and technology).

References

  1. S. J. Oh, C. Kang, I. Maeng, J.-H. Son, N. K. Cho, J. D. Song, W. J. Choi, W.-J. Cho, and J. I. Lee, "Measurement of carrier concentration captured by InAs∕GaAs quantum dots using terahertz time-domain spectroscopy," Appl. Phys. Lett. 90, 131906 (2007).
  2. H. Kim, D. Kang, S. J. Oh, and C. Joo, "Nondestructive evaluation on dispersion of steel fibers in UHPC using THz electromagnetic waves," Constr. Build. Mater. 172, 293-299 (2018). https://doi.org/10.1016/j.conbuildmat.2018.03.238
  3. G. H. Oh, D. J. Kim, D. W. Park, H. S. Kim, Y. B. Ji, and S. J. Oh, "Non-destructive evaluation of defects of glass fiber composite using imaging system based on photo-mixer terahertz technique," J. Korean Soc. Nondestruc. Test. 38, 1-6 (2018). https://doi.org/10.7779/JKSNT.2018.38.1.1
  4. Y. B. Ji, S. J. Oh, S.-G. Kang, J. H. S.-H. Kim, Y. Choi, S. Song, H. Y. Son, S. H. Kim, J. H. Lee, S. J. Haam, Y. M. Huh, J. H. Chang, C. Joo, and J.-S. Suh, "Terahertz reflectometry imaging for low and high grade gliomas," Sci. Rep. 6, 36040 (2016).
  5. H. J. Shin, S. J. Oh, M.-C. Lim, S.-W. Choi, and G. Ok, "Dielectric traces of food materials in the terahertz region," Infrared Phys. Technol. 92, 128-133 (2018). https://doi.org/10.1016/j.infrared.2018.05.022
  6. H. S. Bark, I. Maeng, J. U. Kim, K. D. Kim, J. H. Na, J. Min, J. Byun, Y. Song, B.-Y. Cha, S. J. Oh, and Y. B. Ji, "Terahertz Spectral properties of PEO-based anti-adhesion films crosslinked by electron beam irradiation," Polymers 14, 2008 (2022).
  7. International Commission on Non-Ionizing Radiation Protection (ICNIRP), "Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz)," Health Phys. 118, 483-524 (2020). https://doi.org/10.1097/HP.0000000000001210
  8. M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, "Terahertz conductivity of thin gold films at the metal-insulator percolation transition," Phys. Rev. B 76, 125408 (2007).
  9. I. Maeng, S. Lee, H. Tanaka, J.-H. Yun, S. Wang, M. Nakamura, Y.-K. Kwon, and M.-C. Jung, "Unique phonon modes of a CH3NH3PbBr3 hybrid perovskite film without the influence of defect structures: an attempt toward a novel THz-based application," NPG Asia Mater. 12, 53 (2020).
  10. I. Maeng, S. Lee, E. Q. Han, Y. Zhang, S. J. Oh, M. Nakamura, J.-H. Yun, L. Wang, Y.-K. Kwon, and M.-C. Jung, "Unusual terahertz-wave absorptions in δ/α-mixed-phase FAPbI3 single crystals: Interfacial phonon vibration modes," NPG Asia Mater. 13, 75 (2021).
  11. J. E. Yoo, J. Y. Sung, J. H. Hwang, I. Maeng, S.-J. Oh, I. Lee, J. H. Shim, S. D. Kim, D.-S. Yoon, S. Y. Jang, Y. J. Kang, and S. W. Lee, "MAX-phase films overcome scaling limitations to the resistivity of metal thin films," ACS Appl. Mater. Interfaces 13, 51 (2021).
  12. J. Gou, J. Wang, W. Li, H. Tai, D. Gu, and Y. Jiang, "Terahertz absorption characteristics of NiCr film and enhanced absorption by reactive ion etching in a microbolometer focal plane array," J. Infrared. Millim. and Terahertz Waves 34, 431-436 (2013). https://doi.org/10.1007/s10762-013-9992-4
  13. M. Tinkham, "Energy gap interpretation of experiments on infrared transmission through superconducting films," Phys. Rev. 104, 845-846 (1956). https://doi.org/10.1103/PhysRev.104.845
  14. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, UK, 1999), pp. 64-66.
  15. M. van Exter, and D. Grischkowsky, "Optical and electronic properties of doped silicon from 0.1 to 2 THz," Appl. Phys. Lett. 56, 1694-1696 (1990). https://doi.org/10.1063/1.103120
  16. A. M. Ulatowski, L. M. Herz, and M. B. Johnston, "Terahertz conductivity analysis for highly doped thin-film semiconductors," J. Infrared Millim. Terahertz Waves 41, 1431-1449 (2020). https://doi.org/10.1007/s10762-020-00739-6
  17. J. A. J. Lourens, S. Arajs, H. F. Helbig, E.-S. A. Mehanna, and L. Cheriet, "Critical behavior of the electrical resistance of very thin Cr films," Phys. Rev. B 37, 5423-5425 (1988). https://doi.org/10.1103/PhysRevB.37.5423