DOI QR코드

DOI QR Code

Strongly Enhanced Electric Field Outside a Pit from Combined Nanostructure of Inverted Pyramidal Pits and Nanoparticles

  • Meng Wang (Henan Province Engineering Research Center of Microcavity and Photoelectric Intelligent Sensing, School of Electronics and Electrical Engineering, Shangqiu Normal University) ;
  • Wudeng Wang (School of Mathematical and Physical Sciences, Dalian Polytechnic University)
  • Received : 2023.05.15
  • Accepted : 2023.07.17
  • Published : 2023.10.25

Abstract

We designed a combined nanostructure of inverted pyramidal pits and nanoparticles, which can obtain much stronger field enhancement than traditional periodic pits or nanoparticles. The field enhancement |E|/|E0| is greater than 10 in a large area at 750-820 nm in incident wavelength. |Emax|/|E0| is greater than 60. Moreover, the hot spot is obtained outside the pits instead of localized inside them, which is beneficial for experiments such as surface-enhanced Raman scattering. The relations between resonant wavelength and structural parameters are investigated. The resonant wavelength shows a linear dependence on the structure's period, which provides a direct way to tune the resonant wavelength. The excitation of a propagating surface plasmon on the periodic structure's surface, a localized surface plasmon of nanoparticles, and a standing-wave effect contribute to the enhancement.

Keywords

Acknowledgement

Higher Education Key Program of Henan Province of China (No. 19A140014); National Natural Science Foundation of China (No. 11847162).

References

  1. R. C. McPhedran, I. V. Shadrivov, B. T. Kuhlmey, and Y. S. Kivshar, "Metamaterials and metaoptics," NPG Asia Mater. 3, 100-108 (2011). https://doi.org/10.1038/asiamat.2011.146
  2. Y. Liu and X. Zhang, "Metamaterials: A new frontier of science and technology," Chem. Soc. Rev. 40, 2494-2507 (2011). https://doi.org/10.1039/c0cs00184h
  3. J. P. B. Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, "Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization," Phys. Rev. Lett. 118, 113901 (2017).
  4. H. Sun, Y. Zhang, K. Wang, Y. Zhao, W. Kou, S. Liang, J. Han, and Z. Yang, "Linear polarization conversion of transmitted terahertz wave with double-layer meta-grating surfaces," Chin. Opt. Lett. 16, 81601 (2018).
  5. F. Ding, A. Pors, and S. I. Bozhevolnyi, "Gradient metasurfaces: A review of fundamentals and applications," Rep. Prog. Phys. 81, 026401 (2018).
  6. T. S. Kao, S. D. Jenkins, J. Ruostekoski, and N. I. Zheludev, "Coherent control of nanoscale light localization in metamaterial: Creating and positioning isolated subwavelength energy hot spots," Phys. Rev. Lett. 106, 085501 (2011).
  7. Z. Zhang, D. Wen, C. Zhang, M. Chen, W. Wang, S. Chen, and X. Chen, "Multifunctional light sword metasurface lens," ACS Photonics 5, 1794-1799 (2018).
  8. L. Zhang, S. Liu, L. Li, and T. J. Cui, "Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by Pancharatnam-Berry coding metasurfaces," ACS Appl. Mater. Interfaces 9, 36447-36455 (2017). https://doi.org/10.1021/acsami.7b12468
  9. K. M. Mayer and J. H. Hafner, "Localized surface plasmon resonance sensors," Chem. Rev. 111, 3828-3857 (2011). https://doi.org/10.1021/cr100313v
  10. M. Ren, R. Li, J. Wang, C. Fan, P. Ding, Y. Li, and J. He, "Tuning the optical response of a plasmonic T-shaped dimer with nanowire loads for improved SERS and sensing applications," J. Phys. D: Appl. Phys. 54, 084001 (2020).
  11. V. Sharma, D. Paul, S. K. Chaubey, S. Tiwari, and G. V. P. Kumar, "Large-scale optothermal assembly of colloids mediated by a gold microplate," J. Phys.: Condens. Matter 32, 324002 (2020).
  12. Y. Dubi, I. W. Un, and Y. Sivan, "Thermal effects - an alternative mechanism for plasmon-assisted photocatalysis," Chem. Sci. 11, 5017-5027 (2020). https://doi.org/10.1039/C9SC06480J
  13. J. Song, S. Cheng, H. Li, H. Guo, S. Xu, and W. Xu, "A novel surface-enhanced Raman scattering substrate: Diamond nanopit infilled with gold nanoparticle," Mater. Lett. 135, 214-217 (2014). https://doi.org/10.1016/j.matlet.2014.07.139
  14. C. Zheng, T. Jia, H. Zhao, Y. Xia, S. Zhang, D. Feng, and Z. Sun, "Theoretical study on narrow Fano resonance of nanocrescent for the label-free detection of single molecules and single nanoparticles," RSC Adv. 8, 3381-3391 (2018). https://doi.org/10.1039/C7RA12666B
  15. Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, "Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit," Nat. Commun. 4, 2381 (2013).
  16. J. Wang, Y. Wu, C. Fan, E. Liang, Y. Li, and P. Ding, "Unmodified hot spot in hybridized nanorod dimer for extended surface-enhanced Raman scattering," J. Phys. Chem. Solids 136, 109125 (2020).
  17. B. Yan, S. V. Boriskina, and B. M. Reinhard, "Design and implementation of noble metal nanoparticle cluster arrays for plasmon enhanced biosensing," J. Phys. Chem. C 115, 24437-24453 (2011). https://doi.org/10.1021/jp207821t
  18. Y. Sharma and A. Dhawan, "Hybrid nanoparticle-nanoline plasmonic cavities as SERS substrates with gap-controlled enhancements and resonances," Nanotechnology 25, 085202 (2014).
  19. Q. Chen, Y. Zuo, W. Cai, B. Zhang, L. Pan, J. Yao, Q. Wu, and J. Xu, "Giant field enhancement and resonant wavelength shift through a composite nanostructure," Opt. Commun. 321, 47-50 (2014). https://doi.org/10.1016/j.optcom.2014.01.055
  20. M. Wang, B. Wang, S. Wu, T. Guo, H. Li, Z. Guo, J. Wu, P. Jia, Y. Wang, X. Xu, Y. Wang, and C. Zhang, "Combination of inverted pyramidal nanovoid with silver nanoparticles to obtain further enhancement and its detection for ricin," Nanoscale Res. Lett. 10, 1-6 (2015). https://doi.org/10.1186/1556-276X-10-1
  21. Y. Jiang, H. Shen, T. Pu, C. Zheng, Q. Tang, Y. Li, J. Wu, C. Rui, K. Gao, J. Wu, C. Rui, Y. Li, and Y. Liu, "High efficiency multi-crystalline silicon solar cell with inverted pyramid nanostructure," Sol. Energy 142, 91-96 (2017). https://doi.org/10.1016/j.solener.2016.12.007
  22. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). https://doi.org/10.1103/PhysRevB.6.4370