• Title/Summary/Keyword: THP-1, TNF-${\alpha}$

Search Result 76, Processing Time 0.027 seconds

Effects of Saengjihwangeum-ja Extracts on the Expression of Inflammatory Response in Human Monocyte Cells Induced by Advanced Glycation End Product (생지황음자(生地黃飮子) 추출물이 단핵세포에서 당화종말산물로 유도된 염증반응에 미치는 효과)

  • Lee, Kwang-Gyu;Han, Ung;Jeong, Han-Sol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.6
    • /
    • pp.1305-1313
    • /
    • 2009
  • Saengjihwangeum-ja (SJHEJ) was recorded in DongEuiBoGam as being able to be used for treatment of Sogal whose concept had been applied to Diabetes Mellitus (DM). Modification of proteins by long term circulation of glucose leads to the formation of advanced glycation end product(AGE). Recent immunological studies demonstrated that ligation of AGE play an important role in the development of diabetic complications including atherosclerosis, which includes activation, adhesion, and migration of monocytes. Also, AGE and Maillard reaction product(MRP) could augment monocyte inflammatory responses via ligation of AGE receptor. In this study, the effects of SJHEJ extracts on the expression of inflammatory response-related genes such as tumor necrosis factor-$\alpha$, monocyte chemoattractant protein-1, interferon-g-inducible protein-10, and cyclooxygenase-2 in the human monocyte cell line, THP-1 cells. Reverse transcriptase-polymerase chain reaction revealed that SJHEJ had inhibitory effects on the expression of the TNF-a, MCP-1, IP-10, COX2, IL-1b genes in MRP-induced THP-1 cells. Treatment with SJHEJ had reduced reactive oxygen production in THP-1 cells stimulated by MRP. These inhibitory effects might be exerted via prevention of oxidative stress in activated monocytes. In addition, radical scavenging activity of SJHEJ was increased. These results suggest that SJHEJ has a beneficial effects for improve diabetic vascular complication.

Porphyromonas gingivalis accelerates atherosclerosis through oxidation of high-density lipoprotein

  • Kim, Hyun-Joo;Cha, Gil Sun;Kim, Hyung-Joon;Kwon, Eun-Young;Lee, Ju-Youn;Choi, Jeomil;Joo, Ji-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.1
    • /
    • pp.60-68
    • /
    • 2018
  • Purpose: The aim of this study was to evaluate the ability of Porphyromonas gingivalis (P. gingivalis) to induce oxidation of high-density lipoprotein (HDL) and to determine whether the oxidized HDL induced by P. gingivalis exhibited altered antiatherogenic function or became proatherogenic. Methods: P. gingivalis and THP-1 monocytes were cultured, and the extent of HDL oxidation induced by P. gingivalis was evaluated by a thiobarbituric acid-reactive substances (TBARS) assay. To evaluate the altered antiatherogenic and proatherogenic properties of P. gingivalistreated HDL, lipid oxidation was quantified by the TBARS assay, and tumor necrosis factor alpha (TNF-${\alpha}$) levels and the gelatinolytic activity of matrix metalloproteinase (MMP)-9 were also measured. After incubating macrophages with HDL and P. gingivalis, Oil Red O staining was performed to examine foam cells. Results: P. gingivalis induced HDL oxidation. The HDL treated by P. gingivalis did not reduce lipid oxidation and may have enhanced the formation of MMP-9 and TNF-${\alpha}$. P. gingivalistreated macrophages exhibited more lipid aggregates than untreated macrophages. Conclusions: P. gingivalis induced HDL oxidation, impairing the atheroprotective function of HDL and making it proatherogenic by eliciting a proinflammatory response through its interaction with monocytes/macrophages.

Effects of Amyda sinensis on Allergic Inflammation Mechanism related Atopy Dermatitis (별갑이 아토피 피부염에서의 알러지성 염증 반응에 미치는 영향)

  • Sim, Tae-Kyung;Ko, Dae-Kyoung;Kim, Hyun-Chang;Baek, Yeon-Jong;Lee, Jae-Seok;Yoo, Hwa-Seung
    • Journal of Haehwa Medicine
    • /
    • v.20 no.1
    • /
    • pp.69-83
    • /
    • 2011
  • Objectives: This study aimed to investigate the effects of Amyda sinensis (AS) on allergic inflammation mechanism related atopy dermatitis. Methods: To investigate the effects of AS, We study inhibitory effect of AS on the levels of pro-inflammatory cytokines released from Raw264.7 cell stimulated with LPS (lipopolysaccaride), and EoL-1, THP-1, Jutkat cell stimulated with DP (Dermatophagoides pteronyssinus), and LPS indused acute inflammatory BALB/c mouse model. Result: AS reduced the levels of IL-$1{\beta}$ released from Raw264.7 cell stimulated with LPS at 20 ug/ml, 5 ug/ml concentration, and reduced the levels of IL-6 in a dose-dependent. AS significantly reduced the levels of MCP-1 released from EoL-1 cell stimulated with DP (Dermatophagoides pteronyssinus) at all the concentration, and significantly reduced the level of IL-8 at 0.1 ug/ml concentration. AS significantly reduced the levels of MCP-1 released from THP-1 cell stimulated with DP (Dermatophagoides pteronyssinus) at 1 ug/ml concentration, and reduced the level of IL-6 in a dose-dependent. AS significantly reduced the levels of IL-4 released from Jutkat cell stimulated with DP at all the concentration, and significantly reduced the level of IL-5 at 0.1 ug/ml. 1 ug/ml concentration,. and reduced the level of TNF-${\alpha}$ in a dose-dependent. AS significantly reduced the levels of TNF-${\alpha}$, IL-6, IL-$1{\beta}$, in LPS indused acute inflammatory BALB/c mouse model, in a dose-dependent. Conclusion: These result suggested that AS has suppressive effect on pro-inflammatory cytokines in various cell lines through the regulation of immune system. AS could be applied on the medicinal sources for treatment of immune abnormal diseases such as atopy dermatitis afterward.

Enhancing the Effects of Zerumbone on THP-1 Cell Activation (단핵구세포주의 활성에 미치는 Zerumbone의 영향)

  • Lee, Min Ho;Kim, Sa Hyun;Ryu, Sung Ryul;Lee, Pyeongjae;Moon, Cheol
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Zerumbone is a major component of the essential oil from Zingiber zerumbet Smith, which is a kind of wild ginger. In addition, various biological functions, such as liver protection, pain relief, atherosclerosis, and antimicrobial activity have been reported. It is also known to be effective in the proliferation of immune cells and the expression of cytokines. In this study, we investigated the effects of zerumbone on monocyte activation. First, it was confirmed that the proliferation of THP-1 cells was increased by zerumbone. The strongest increase in THP-1 proliferation after lipopolysaccharide treatment was observed at $5{\mu}M$ zerumbone treatment, and the increase of cell proliferation without lipopolysaccharide was the highest at $10{\mu}M$. Conversely, when treated with $50{\mu}M$ zerumbone, a rapid decrease of proliferation was observed regardless of the presence of lipopolysaccharide (LPS). The phosphorylation of signaling protein, Erk, induced by LPS was also increased by zerumbone. The strongest increase in phosphorylation was observed when treated with $50{\mu}M$ of zerumbone with reduced proliferation. The activity of transcription factor $NF-{\kappa}B$ was not significantly altered by zerumbone alone, but increased when treated with lipopolysaccharide. Furthermore, the transcription of the inflammatory cytokines $TNF-{\alpha}$ and IL-8, which are regulated by $NF-{\kappa}B$, is also increased by zerumbone. These results suggest that zerumbone can enhance the proliferation and activity of monocytes. Furthermore, it is believed that zerumbone can enhance rthe immune responses through increased monocyte activity in bacterial infections with LPS, thereby helping to treat effective bacteria.

Rutin induces autophagy in cancer cells

  • Park, Mi Hee;Kim, Seyeon;Song, Yu-ri;Kim, Sumi;Kim, Hyung-Joon;Na, Hee Sam;Chung, Jin
    • International Journal of Oral Biology
    • /
    • v.41 no.1
    • /
    • pp.45-51
    • /
    • 2016
  • Rutin (3,3',4',5,7-pentahydroxyflavone-3-rhamnoglucoside) is a bioactive flavonoid from the plant kingdom. Rutin has been studied as potential anticancer agent due to its wide range of pharmacological properties including antioxidative, anti-inflammatory and anticancer. Autophagy is a conserved intracellular catabolic pathway to maintain cell homeostasis by formation of autophagosome. Processing of autophagy involves various molecules including ULK1 protein kinase complex, Beclin-1-Vps34 lipid kinase complex, ATG5, ATG12, and LC3 (light chain 3). Cargo-carried autophagosomes fuse with lysosomes resulting in autophagolysosome to eliminate vesicles and degrade cargo. However, the actions of rutin on autophagy are not clearly understood. In this study, we analyzed the effect of rutin on autophagy and inflammation in cancer cell lines. Interestingly, rutin induced autophagy in leukemia (THP-1), oral (CA9-22), and lung (A549) cell lines. TNF-${\alpha}$, key modulator of inflammation, was upregulated by inhibition of rutin-induced autophagy. Taken together, these data indicated that rutin induced autophagy and consequently suppressed TNF-${\alpha}$ production.

Inhibition Effect of Trachelospermi Caulis on the Inflammation and Cell Death in Arthritis (락석등(絡石藤)의 관절염에 대한 염증 및 세포사 억제 작용)

  • Hwang, Man-Young;Cha, Yun-Yeop
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.2
    • /
    • pp.436-441
    • /
    • 2006
  • Rheumatoid arthritis is a chronic, systemic, and inflammatory autoimmune disorder that affects 1% of the adult population worldwide. Osteoarthritis is a multifactorial disease with high morbidity that is characterized by degradation of the matrix and destruction of articular cartilage. In this study, we examined the inhibition effect of Trachelospermi Caulis on the inflammation($TNF-{\alpha}$, $IL-1{\beta}$, NO), cartilage protection(MMP-13), and cell death in arthritis. RAW 264.7 and SW 1353 cells were cultivated in DMAE(GibcoBRL, USA) with 5% FBS and Fungizone in $37^{\circ}C$, 5% CO2. THP-1 cells were cultivated in RPMI(GibcoBRL, USA) with 5% FBS and Fungizone in $37^{\circ}C$, 5% CO2. Activity of caspase-3, XIAP, Cytochrome C in the cell was examined by using western blot. The results obtained were as Follows; Concentration of nitric oxide in Trachelospermi Caulis treatment group significantly decreased compared with that of non-treatment group (P<0.05). In treated group, Concentration of Trachelospermi Caulis was not significantly associated with cell death. Concentration of $TNF-{\alpha}$ and $IL-1{\beta}$ in Trachelospermi Caulis treatment group decreased significantly compared with that of none treatment group (P<0.05). Relative density of MMP-13 in Trachelospermi Caulis treatment group decreased significantly compared with that of none treatment group and dose-response relationship was observed. After treatment of staurosporin in SW1353 which increases cell death, in Trachelospermi Caulis treated group, the cell death was effectively decreased. In conclusion, these results suggest that Trachelospermi Caulis inhibit inflammation and cell death in arthritis. More researches about effect of Trachelospermi Caulis are considered to need.

Inhibitory Effects of Yanghyelyoonbutang (YHYBT) on Allergic Reaction and Pro-Inflammatory Cytokines in Various Cell Lines (양혈윤부탕(養血潤膚湯)의 면역(免疫) 조절작용(調節作用)을 통한 항알러지 효능(效能))

  • Lee, Kyoung-Mee;Koo, Young-Sun;Kim, Dong-Hee
    • Journal of Haehwa Medicine
    • /
    • v.15 no.2
    • /
    • pp.121-134
    • /
    • 2006
  • This study saw the anti-allergy effect by the immunity regulation action of Yanghyelyoonbotang (YHYBT) consists 12 kinds of herbal medicine agents. Consequently, YHYBT controlled the amount of secretion of various infla- mmatory cytokines, chemokine, monocyte chemotactic protein and histamine from cells (HMC-1, THP-1, EoL-1) stimulated by PMA, A23187 or HDM. 1. YHYBT did not show cytotoxicity on cultured human fibroblast cells under 250 ${\mu}g/m\ell$ concentration. 2. YHYBT suppressed IL-8, TNF-$\alpha$, IL-6 mRNA expression in the HMC-1 cell stimulated with PMA and A23187. 3. YHYBT significantly suppressed IL-6 release in the THP-1 and EoL-1 cell stimulated with HDM. 4. YHYBT significantly suppressed histamine release in the HMC-1 cell stimulated with PMA and A23187 in a dose-dependent. 5. YHYBT significantly suppressed $\beta$-Hexosaminidase release in the HMC-1 cell stimulated with A23187 in a dose-dependent. 6. YHYBT suppressed NF-$\kappa$B gene expression in the RBL-2H3 cell stimulated with PMA in a dose-dependent. These results suggested that YHYBT has suppressive effects on allergic reaction and pro-inflammatory cytokines in various cell lines through the regulation of immune system. YHYBT has potential to use as an antiallergic agents.

  • PDF

Anti-inflammatory Effect of Lactuca sativa L. Extract in Human Umbilical Vein Endothelial Cells and Improvement of Lipid Levels in Mice Fed a High-fat Diet (상추 추출물(Lactuca sativa L.)의 혈관내피세포에서 항염증 작용과 고지방 식이 생쥐에서 혈중 지질농도 개선에 미치는 영향)

  • Hwang-Bo, Jeon;Jang, Kyung Ok;Chung, Hayoung;Park, Jong-Hwa;Lee, Tae Hoon;Kim, Jiyoung;Chung, In Sik
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.6
    • /
    • pp.998-1007
    • /
    • 2016
  • The objective of this study was to investigate the effects of a lettuce (Lactuca sativa L.) extract on the inflammation of human umbilical vein endothelial cell (HUVEC) and blood lipid improvement in hypercholesterolemic mice fed a high cholesterol diet. The lettuce extract (100% ethanol extract) inhibited the expression of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in HUVEC treated with tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$). The lettuce extract suppressed the adhesion of THP-1 to TNF-${\alpha}$-treated HUVEC. The lettuce extract decreased the TNF-${\alpha}$-stimulated production of proinflammatory cytokine interleukin-6, interleukin-8 and chemokine monocyte chemotactic protein 1. In hypercholesterolemic mice, the lettuce extract reduced serum total cholesterol, triglyceride, and low-density lipoprotein-cholesterol level, while the lettuce extract elevated high-density lipoprotein-cholesterol level, resulting in the decrease of atherogenic index and cardiac risk factor level. These results suggested that lettuce extract can be an useful resource to show an anti-inflammatory effect and improve lipid metabolism.

Antibacterial and Anti-inflammatory Effects of Medicinal Plants Against Acne-inducing Bacteria (천연 약용식물 추출물의 여드름 원인균에 대한 항균 및 항염증 효과)

  • Lee, Eung-Ji;Bae, Seong-Yun;NamKung, Woo;Lee, Yong-Hwa
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.36 no.1
    • /
    • pp.57-63
    • /
    • 2010
  • To develop natural therapeutic agents for acne vulgaris, we investigated antibacterial and anti-inflammatory effects of various medicinal plant extracts. Among candidate extracts, we selected Psoralea corylifolia L. extract (AC-1) and Magnoliae officinalis extract (AC-2) which showed the relatively high antibacterial effects, and Inula helenium L. extract (ACF-1) and Chrysanthemum zawadskii var. latilobum extract (ACF-2) which showed the relatively high anti-inflammatory effects for further investigations. All of them did not show cytotoxic effects below the concentration of $50{\mu}g/mL$. The antibacterial effects of AC-1, AC-2 and extract complex (AC) against P. acnes were 2.8, 2.5 and 3.2 times higher than that of 10 % salicylic acid respectively. And the antibacterial effect of AC-2 and extract complex against S. aureus were 1.4 and 1.5 times higher than that of 10 % methylparaben respectively. Also, it was shown that ACF-1, ACF-2 and extract complex had anti-inflammatory effects. All of them exhibited inhibitory effects for the secretion of IL-8 and TNF-$\alpha$ from THP-1 cells activated by heat-killed P. acnes. They reduced about 27 %, 38 %, 44 % of IL-8 secretion and 90 %, 88 %, 90 % of TNF-$\alpha$ secretion at concentration of $50{\mu}g/mL$ respectively. These results showed that the complex of medicinal plant extracts, AC-1. AC-2, ACF-1, and ACF-2, had therapeutic effects to acne vulgaris through antibacterial and anti-inflammatory effects. Therefore, we suggest that extract complex of AC-1, AC-2, ACF-1 and ACF-2 may be used as a useful agent for development of natural cosmetics which have therapeutic effects to acne vulgaris.

Granulocyte Colony Stimulating Factor (G-CSF) Attenuates 2,4,6-Trinitrobenzene Sulfonic Acid (TNBS)-induced Colitis in Mice (마우스 염증성 장 질환 모델에서 G-CSF (Granuocyte Colony Stimulating Factor)에 의한 염증 완화)

  • Choi, Eun-Young;Jun, Chang-Duk;Oh, Jae-Min;Kim, Yu-Rim;Lee, Soo-Teik;Kim, Sang-Wook
    • IMMUNE NETWORK
    • /
    • v.6 no.1
    • /
    • pp.13-19
    • /
    • 2006
  • Background: Granulocyte colony stimulating factor (G-CSF) is known as a cytokine central to the hematopoiesis of blood cells and to modulate their cellular functions. Besides granulocytes and their precursors, monocytes/macrophages and endothelial cells are direct target cells of G-CSF action. G-CSF influences immune cells in an anti inflammatory way. Methods: To evaluate whether G-CSF has a potential for preventing or ameliorating diseases characterized by mucosal inflammation, we used a mouse model with trinitrobenzene sulfonic acid (TNBS)-induced inflammatory colitis. To the mice model G-CSF was administrated daily by intraperitoneal injection. Macroscopic evaluation and immunohistochemical analysis of colonic tissues were performed. Results: Re combinant human G-CSF significantly inhibited LPS-induced TNF-${\alpha}$ mRNA expression in THP-1 cells. As for in vivo relevance, G-CSF dramatically reduced the weight loss of mice, colonic damage, and mucosal ulceration that characterize TNBS colitis. Moreover, G-CSF suppressed the expression of tumor necrosis factor-${\alpha}$, interleukin-$1{\beta}$, and intercellular adhesion molecule-1 in TNBS colitis. Conclusion: Current results demonstrate that G-CSF may be an effective agent for the treatment of diseases characterized by mucosal inflammation.