• Title/Summary/Keyword: THINNING

Search Result 1,316, Processing Time 0.024 seconds

Vegetation classification based on remote sensing data for river management (하천 관리를 위한 원격탐사 자료 기반 식생 분류 기법)

  • Lee, Chanjoo;Rogers, Christine;Geerling, Gertjan;Pennin, Ellis
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.6-7
    • /
    • 2021
  • Vegetation development in rivers is one of the important issues not only in academic fields such as geomorphology, ecology, hydraulics, etc., but also in river management practices. The problem of river vegetation is directly connected to the harmony of conflicting values of flood management and ecosystem conservation. In Korea, since the 2000s, the issue of river vegetation and land formation has been continuously raised under various conditions, such as the regulating rivers downstream of the dams, the small eutrophicated tributary rivers, and the floodplain sites for the four major river projects. In this background, this study proposes a method for classifying the distribution of vegetation in rivers based on remote sensing data, and presents the results of applying this to the Naeseong Stream. The Naeseong Stream is a representative example of the river landscape that has changed due to vegetation development from 2014 to the latest. The remote sensing data used in the study are images of Sentinel 1 and 2 satellites, which is operated by the European Aerospace Administration (ESA), and provided by Google Earth Engine. For the ground truth, manually classified dataset on the surface of the Naeseong Stream in 2016 were used, where the area is divided into eight types including water, sand and herbaceous and woody vegetation. The classification method used a random forest classification technique, one of the machine learning algorithms. 1,000 samples were extracted from 10 pre-selected polygon regions, each half of them were used as training and verification data. The accuracy based on the verification data was found to be 82~85%. The model established through training was also applied to images from 2016 to 2020, and the process of changes in vegetation zones according to the year was presented. The technical limitations and improvement measures of this paper were considered. By providing quantitative information of the vegetation distribution, this technique is expected to be useful in practical management of vegetation such as thinning and rejuvenation of river vegetation as well as technical fields such as flood level calculation and flow-vegetation coupled modeling in rivers.

  • PDF

Isotopic Determination of Food Sources of Benthic Invertebrates in Two Different Macroalgal Habitats in the Korean Coasts (동위원소 분석에 의한 동해와 남해 연안의 상이한 해조류 군락에 서식하는 저서무척추동물 먹이원 평가)

  • Kang, Chang-Keun;Choy, Eun-Jung;Song, Haeng-Seop;Park, Hyun-Je;Soe, In-Soo;Jo, Q-Tae;Lee, Kun-Seop
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.4
    • /
    • pp.380-389
    • /
    • 2007
  • Stable carbon and nitrogen isotopes were analyzed in suspended particulate organic matter, macroalgae and macrobenthic invertebrates in order to determine the importance of primary organic matter sources in supporting food webs of rocky subtidal and intertidal macroalgal beds in the Korean coasts. Investigations were conducted at the inter tidal sites within Gwangyang bay, a semi-enclosed and eutrophicated bay, and the subtidal sites of the east coast, a relatively oligotrophic and open environment, in May and June 2005. Water-column suspension feeders showed more negative $\delta^{13}C$ values than those of the other feeding guilds, indicating trophic linkage with phytoplankton and thereby association with pelagic food chains. In contrast, animals of the other feeding guilds, including interface suspension feeders, herbivores, deposit feeders, omnivores and predators, displayed relatively less negative $\delta^{13}C$ values than those of the water-column suspension feeders and similar with that of macroalgae, indicating exclusive use of macroalgae-derived organic matter and association with benthic food chains. Most the macrobenthic species were considered to form strong trophic links with benthic food chains. In addition, the distribution of higher $\delta^{15}N$ values in macrobenthic consumers and macroalgae at the intertidal sites of Gwangyang Bay than those at the subtidal sites of the east coast suggests that anthropogenic nutrients may enhance the macroalgal production at the intertidal sites and in turn be incorporated into the particular littoral food web in Gwangyag Bay. These results confirm the dominant role of macroalgae in supporting rocky subtidal and intertidal food webs in the Korean coasts.

A Study on the Forest Yield Regulation by Systems Analysis (시스템분석(分析)에 의(依)한 삼림수확조절(森林收穫調節)에 관(關)한 연구(硏究))

  • Cho, Eung-hyouk
    • Korean Journal of Agricultural Science
    • /
    • v.4 no.2
    • /
    • pp.344-390
    • /
    • 1977
  • The purpose of this paper was to schedule optimum cutting strategy which could maximize the total yield under certain restrictions on periodic timber removals and harvest areas from an industrial forest, based on a linear programming technique. Sensitivity of the regulation model to variations in restrictions has also been analyzed to get information on the changes of total yield in the planning period. The regulation procedure has been made on the experimental forest of the Agricultural College of Seoul National University. The forest is composed of 219 cutting units, and characterized by younger age group which is very common in Korea. The planning period is devided into 10 cutting periods of five years each, and cutting is permissible only on the stands of age groups 5-9. It is also assumed in the study that the subsequent forests are established immediately after cutting existing forests, non-stocked forest lands are planted in first cutting period, and established forests are fully stocked until next harvest. All feasible cutting regimes have been defined to each unit depending on their age groups. Total yield (Vi, k) of each regime expected in the planning period has been projected using stand yield tables and forest inventory data, and the regime which gives highest Vi, k has been selected as a optimum cutting regime. After calculating periodic yields and cutting areas, and total yield from the optimum regimes selected without any restrictions, the upper and lower limits of periodic yields(Vj-max, Vj-min) and those of periodic cutting areas (Aj-max, Aj-min) have been decided. The optimum regimes under such restrictions have been selected by linear programming. The results of the study may be summarized as follows:- 1. The fluctuations of periodic harvest yields and areas under cutting regimes selected without restrictions were very great, because of irregular composition of age classes and growing stocks of existing stands. About 68.8 percent of total yield is expected in period 10, while none of yield in periods 6 and 7. 2. After inspection of the above solution, restricted optimum cutting regimes were obtained under the restrictions of Amin=150 ha, Amax=400ha, $Vmin=5,000m^3$ and $Vmax=50,000m^3$, using LP regulation model. As a result, about $50,000m^3$ of stable harvest yield per period and a relatively balanced age group distribution is expected from period 5. In this case, the loss in total yield was about 29 percent of that of unrestricted regimes. 3. Thinning schedule could be easily treated by the model presented in the study, and the thinnings made it possible to select optimum regimes which might be effective for smoothing the wood flows, not to speak of increasing total yield in the planning period. 4. It was known that the stronger the restrictions becomes in the optimum solution the earlier the period comes in which balanced harvest yields and age group distribution can be formed. There was also a tendency in this particular case that the periodic yields were strongly affected by constraints, and the fluctuations of harvest areas depended upon the amount of periodic yields. 5. Because the total yield was decreased at the increasing rate with imposing stronger restrictions, the Joss would be very great where strict sustained yield and normal age group distribution are required in the earlier periods. 6. Total yield under the same restrictions in a period was increased by lowering the felling age and extending the range of cutting age groups. Therefore, it seemed to be advantageous for producing maximum timber yield to adopt wider range of cutting age groups with the lower limit at which the smallest utilization size of timber could be produced. 7. The LP regulation model presented in the study seemed to be useful in the Korean situation from the following point of view: (1) The model can provide forest managers with the solution of where, when, and how much to cut in order to best fulfill the owners objective. (2) Planning is visualized as a continuous process where new strateges are automatically evolved as changes in the forest environment are recognized. (3) The cost (measured as decrease in total yield) of imposing restrictions can be easily evaluated. (4) Thinning schedule can be treated without difficulty. (5) The model can be applied to irregular forests. (6) Traditional regulation methods can be rainforced by the model.

  • PDF

Characteristics of New Microsporidia S80 Isolated from Silkworm, Bombyx mori L. in Korea (가잠(家蠶)으로부터 분리(分離)된 새로운 Microsporidia S80의 특성(特性))

  • Lim, Jong Sung;Cho, Sae Yun
    • Current Research on Agriculture and Life Sciences
    • /
    • v.1
    • /
    • pp.67-83
    • /
    • 1983
  • The new microsporidia S80 isolated from, Bombyx mori L. in Korea showed ovoid in the morphology of the spores and the size were measured $2.9{\pm}0.28{\mu}$ in length and $1.7{\pm}0.29{\mu}$ width. No other microsporidian spore like this has not been so far isolated from Silkworm. The length of the polar filament extruded in hydrogen peroxide ($H_2O_2$) at $30^{\circ}C$ was $26{\mu}$ of a round cytoplasm on the top. The spores were partly stained with Giemsa, Safranin-O and Gram as the same staining properties as Nosema bombycis, Microsporidia K 79 and other microsporidian spores. The fine structures were observed under scanning eleceron microscope through ultrathin sectioning. The spore wall was composed of three layers ; the thin exospore of an electron dense rippled layer, the thick electron lucent endospore which was thinning considerably at the polar filament insertion point, and the inner limiting membrane. Polar cap present at the sporeapex, with a long polar filament of 12-13 coils, subtending angle of $60^{\circ}$ to spore axis, which is tubular made up of a multilayered and are a benes core, light ring structure enclosing the dance core, the dark ring structure enclosing the inner light ring structure and the other than and light ring structure bounded from cytoplasm. Lamellate polaroplast occupied the anterior part of the spore, and the two neclei with dense nucleoplasm bounded by a double nuclear envelope were cited in the slight downer middle portion of spore. From the characteristics of the shape, size and fine structures, it is certain to reason the Microsporidia S80 belong to the phylum Microspora, class Microspora, order Microsporida, order Microsporida. The shape of two nuclei cited seems to be genus Nosema, but in the classification for the suborder it should be defined wheather pansporoblasts be formed or not and for the genis especial attempts have been made to define the characters which distinguish the disporous genera in the life cycle. Survey through the infection of the bad cocoons during 1980 to 1982 in South Korea the areas contaminated with new microsporidia were revealed 5 provinces of Kyung-Gi, Kang-Won, Chung-Nam and Chun-Nam. Pathological effects inoculated per os at second instar larvae of silkworm, the LD 50 was $7.1{\times}10^7/ml$ as lower pathogenecity than that of Nosema bombycis Naegeli of $1.2{\times}10_7/ml$. While on the other hand the inoculation of the microsporidia at fourth instar larvae lowerd the whole cocoon weight and cocoon shell weight and significant at 1% level. The microsporidia S80 defined it can not be transmitted transovarially from the result of predictive and collective examination of 21 egg batches from the infected female moth.

  • PDF

A Study on Transition of Rice Culture Practices During Chosun Dynasty Through Old References IX. Intergrated Discussion on Rice (주요(主要) 고농서(古農書)를 통(通)한 조선시대(朝鮮時代)의 도작기술(稻作技術) 전개(展開) 과정(過程) 연구(硏究) - IX. 도작기술(稻作技術)에 대(對)한 종합고찰(綜合考察))

  • Guh, J.O.;Lee, S.K.;Lee, E.W.;Lee, H.S.
    • Korean Journal of Weed Science
    • /
    • v.12 no.1
    • /
    • pp.70-79
    • /
    • 1992
  • From the beginning of the chosun dynasty, an agriculture-first policy was imposed by being written farming books, for instance, Nongsajiksul, matched with real conditions of local agriculture, which provided the grounds of new, intensive farming technologies. This farming book was the collection of good fanning technologies that were experienced in rural farm areas at that time. According to Nongsajiksul, rice culture systems were divided into "Musarmi"(Water-Seeded rice), /"Kunsarmi"(dry-seeded rice), /transplanted rice and mountainous rice (upland rice) culture. The characteristics of these rice cultures with high technologies were based of scientific weeding methods, improved fertilization, and cultivation works using cattle power and manpower tools systematically. Reclamation of coastal swampy and barren land was possible in virtue of fire cultivation farming(火耕) and a weeding tool called "Yoonmok"(輪木). Also, there was an improved hoe to do weeding works as well as thinning and heaping-up of soil at seeding stages of rice. Direct-seeded rice culture in flat paddy fields were expanded by constructing the irrigation reservoirs and ponds, and the valley paddy fields was reclaimed by constructing "Boh(洑)". These were possible due to weed control by irrigation waters, keeping soil fertility by inorganic fertilization during irrigation, and increased productivity of rice fields by supplying good physiological conditions for rice. Also, labor-saving culture of rice was feasible by transplanting but in national-wide, rice should not basically be transplanted because of the restriction of water use. Thus, direct-seeded rice in dry soils was established, in which rice was direct-seeded and grown in dry soils by seedling stages and was grown in flooded fields when rained, as in the book "Nongsajiksul". During the middle of the dynasty(AD 1495-1725), the excellent labor-saving farmings include check-rowing transplanting because of weeding efficiency and availability in rice("Hanjongrok"), and, nurserybed techniques (early transplanting of rice) were emphasized on the basis of rice transplanting ["Nongajibsung"]. The techniques for deep plowing with cattle powers and for putting more fertilizers were to improve the productivity of labor and land, The matters advanced in "Sanlimkyungje" more than in "Nongajibsung" were, development of "drybed of rice nursery stock", like "upland rice nursery" today, transplanting, establishment of "winter barly on drained paddy field, and improvement of labor and land-productivity in rice". This resulted in the community of large-scale farming by changing the pattern of small-farming into the production system of rice management. Woo-hayoung(1741-1812) in his book "Chonilrok" tried to reform from large-scale farmings into intensive farmings, of which as eminent view was to divide the land use into transplanting (paddy) and groove-seeding methods(dry field). Especially as insisted by Seo-yugo ("Sanlimkyungjeji"), the advantages of transplanting were curtailment of weeding labors, good growth of rice because of soil fertility of both nurserybed and paddy field, and newly active growth because rice plants were pulled out and replanted. Of course, there were reestimation of transplanting, limitation of two croppings a year, restriction of "paddy-upland alternation", and a ban for large-scale farming. At that period, Lee-jiyum had written on rice farming technologies in dry upland with consider of the land, water physiology of rice, and convenience for weeding, and it was a creative cropping system to secure the farm income most safely. As a integrated considerations, the followings must be introduced to practice the improved farming methods ; namely, improvement of farming tools, putting more fertilizers, introduction of cultural technologies more rational and efficient, management of labor power, improvement of cropping system to enhance use of irrigation water and land, introduction of new crops and new varieties.

  • PDF

Ecological Changes of Insect-damaged Pinus densiflora Stands in the Southern Temperate Forest Zone of Korea (I) (솔잎혹파리 피해적송림(被害赤松林)의 생태학적(生態学的) 연구(研究) (I))

  • Yim, Kyong Bin;Lee, Kyong Jae;Kim, Yong Shik
    • Journal of Korean Society of Forest Science
    • /
    • v.52 no.1
    • /
    • pp.58-71
    • /
    • 1981
  • Thecodiplosis japonesis is sweeping the Pinus densiflora forests from south-west to north-east direction, destroying almost all the aged large trees as well as even the young ones. The front line of infestation is moving slowly but ceaselessly norhwards as a long bottle front. Estimation is that more than 40 percent of the area of P. densiflora forest has been damaged already, however some individuals could escapes from the damage and contribute to restore the site to the previous vegetation composition. When the stands were attacked by this insect, the drastic openings of the upper story of tree canopy formed by exclusively P. densiflora are usually resulted and some environmental factors such as light, temperature, litter accumulation, soil moisture and offers were naturally modified. With these changes after insect invasion, as the time passes, phytosociologic changes of the vegetation are gradually proceeding. If we select the forest according to four categories concerning the history of the insect outbreak, namely, non-attacked (healthy forest), recently damaged (the outbreak occured about 1-2 years ago), severely damaged (occured 5-6 years ago), damage prolonged (occured 10 years ago) and restored (occured about 20 years ago), any directional changes of vegetation composition could be traced these in line with four progressive stages. To elucidate these changes, three survey districts; (1) "Gongju" where the damage was severe and it was outbroken in 1977, (2) "Buyeo" where damage prolonged and (3) "Gochang" as restored, were set, (See Tab. 1). All these were located in the south temperate forest zone which was delimited mainly due to the temporature factor and generally accepted without any opposition at present. In view of temperature, the amount and distribution of precipitation and various soil factor, the overall homogeneity of environmental conditions between survey districts might be accepted. However this did not mean that small changes of edaphic and topographic conditions and microclimates can induce any alteration of vegetation patterns. Again four survey plots were set in each district and inter plot distance was 3 to 4 km. And again four subplots were set within a survey plot. The size of a subplot was $10m{\times}10m$ for woody vegetation and $5m{\times}5m$ for ground cover vegetation which was less than 2 m high. The nested quadrat method was adopted. In sampling survey plots, the followings were taken into account: (1) Natural growth having more than 80 percent of crown density of upper canopy and more than 5 hectares of area. (2) Was not affected by both natural and artificial disturbances such as fire and thinning operation for the past three decades. (3) Lower than 500 m of altitude (4) Less than 20 degrees of slope, and (5) Northerly sited aspect. An intensive vegetation survey was undertaken during the summer of 1980. The vegetation was devided into 3 categories for sampling; the upper layer (dominated mainly by the pine trees), the middle layer composed by oak species and other broad-leaved trees as well as the pine, and the ground layer or the lower layer (shrubby form of woody plants). In this study our survey was concentrated on woody species only. For the vegetation analysis, calculated were values of intensity, frequency, covers, relative importance, species diversity, dominance and similarity and dissimilasity index when importance values were calculated, different relative weights as score were arbitrarily given to each layer, i.e., 3 points for the upper layer, 2 for the middle layer and 1 for the ground layer. Then the formula becomes as follows; $$R.I.V.=\frac{3(IV\;upper\;L.)+2(IV.\;middle\;L.)+1(IV.\;ground\;L.)}{6}$$ The values of Similarity Index were calculated on the basis of the Relative Importance Value of trees (sum of relative density, frequency and cover). The formula used is; $$S.I.=\frac{2C}{S_1+S_2}{\times}100=\frac{2C}{100+100}{\times}100=C(%)$$ Where: C = The sum of the lower of the two quantitative values for species shared by the two communities. $S_1$ = The sum of all values for the first community. $S_2$ = The sum of all values for the second community. In Tab. 3, the species composition of each plot by layer and by district is presented. Without exception, the species formed the upper layer of stands was Pinus densiflora. As seen from the table, the relative cover (%), density (number of tree per $500m^2$), the range of height and diameter at brest height and cone bearing tendency were given. For the middle layer, Quercus spp. (Q. aliena, serrata, mongolica, accutissina and variabilis) and Pinus densiflora were dominating ones. Genus Rhodedendron and Lespedeza were abundant in ground vegetation, but some oaks were involved also. (1) Gongju district The total of woody species appeared in this district was 26 and relative importance value of Pinus densiflora for the upper layer was 79.1%, but in the middle layer, the R.I.V. for Quercus acctissima, Pinus densiflora, and Quercus aliena, were 22.8%, 18.7% and 10.0%, respectively, and in ground vegetation Q. mongolica 17.0%, Q. serrata 16.8% Corylus heterophylla 11.8%, and Q. dentata 11.3% in order. (2) Buyeo district. The number of species enumerated in this district was 36 and the R.I.V. of Pinus densiflora for the uppper layer was 100%. In the middle layer, the R.I.V. of Q. variabilis and Q. serrata were 8.6% and 8.5% respectively. In the ground vegetative 24 species were counted which had no more than 5% of R.I.V. The mean R.I.V. of P.densiflora ( totaling three layers ) and averaging four plots was 57.7% in contrast to 46.9% for Gongju district. (3) Gochang-district The total number of woody species was 23 and the mean R.I.V. of Pinus densiflora was 66.0% showing greater value than those for two former districts. The next high value was 6.5% for Q. serrata. As the time passes since insect outbreak, the mean R.I.V. of P. densiflora increased as the following order, 46.9%, 57.7% and 66%. This implies that P. densiflora was getting back to its original dominat state again. The pooled importance of Genus Quercus was decreasing with the increase of that for Pinus densiflora. This trend was contradict to the facts which were surveyed at Kyonggi-do area (the central temperate forest zone) reported previously (Yim et al, 1980). Among Genus Quercus, Quercus acutissina, warm-loving species, was more abundant in the southern temperature zone to which the present research is concerned than the central temperate zone. But vice-versa was true with Q. mongolica, a cold-loving one. The species which are not common between the present survey and the previous report are Corpinus cordata, Beltala davurica, Wisturia floribunda, Weigela subsessilis, Gleditsia japonica var. koraiensis, Acer pseudosieboldianum, Euonymus japonica var. macrophylla, Ribes mandshuricum, Pyrus calleryana var. faruiei, Tilia amurensis and Pyrus pyrifolia. In Figure 4 and Table 5, Maximum species diversity (maximum H'), Species diversity (H') and Eveness (J') were presented. The Similarity indices between districts were shown in Tab. 5. Seeing Fig. 6, showing two-dimensional ordination of polts on the basis of X and Y coordinates, Ai plots aggregate at the left site, Bi plots at lower site, and Ci plots at upper-right site. The increasing and decreasing patterns as to Relative Density and Relative Importance Value by genus or species were given in Fig. 7. Some of the patterns presented here are not consistent with the previously reported ones (Yim, et al, 1980). The present authors would like to attribute this fact that two distinct types of the insect attack, one is the short war type occuring in the south temperate forest zone, which means that insect attack went for a few years only, the other one is a long-drawn was type observed at the temperate forest zone in which the insect damage went on continuously for several years. These different behaviours of infestation might have resulted the different ways of vegetational change. Analysing the similarity indices between districts, the very convincing results come out that the value of dissimilarity index between A and B was 30%, 27% between B and C and 35% between A and C (Table 6). The range of similarity index was obtained from the calculation of every possible combinations of plots between two districts. Longer time isolation between communities has brought the higher value of dissimilarity index. The main components of ground vegetation, 10 to 20 years after insect outbreak, become to be consisted of mainly Genus Lespedeza and Rhododendron. Genus Quercus which relate to the top dorminant state for a while after insect attack was giving its place to Pinus densiflora. It was implied that, provided that the soil fertility, soil moisture and soil depth were good enough, Genus Quercuss had never been so easily taken ever by the resistant speeies like Pinus densiflora which forms the edaphic climax at vast areas of forest land. Usually they refer Quercus to the representative component of the undisturbed natural forest in the central part of this country.

  • PDF