DOI QR코드

DOI QR Code

Isotopic Determination of Food Sources of Benthic Invertebrates in Two Different Macroalgal Habitats in the Korean Coasts

동위원소 분석에 의한 동해와 남해 연안의 상이한 해조류 군락에 서식하는 저서무척추동물 먹이원 평가

  • Kang, Chang-Keun (Division of Biological Sciences, Pusan National University) ;
  • Choy, Eun-Jung (Division of Biological Sciences, Pusan National University) ;
  • Song, Haeng-Seop (Division of Biological Sciences, Pusan National University) ;
  • Park, Hyun-Je (Division of Biological Sciences, Pusan National University) ;
  • Soe, In-Soo (Marine Eco-Technology Institute) ;
  • Jo, Q-Tae (East Sea Fisheries Research Institute, NFRDI) ;
  • Lee, Kun-Seop (Division of Biological Sciences, Pusan National University)
  • Published : 2007.11.30

Abstract

Stable carbon and nitrogen isotopes were analyzed in suspended particulate organic matter, macroalgae and macrobenthic invertebrates in order to determine the importance of primary organic matter sources in supporting food webs of rocky subtidal and intertidal macroalgal beds in the Korean coasts. Investigations were conducted at the inter tidal sites within Gwangyang bay, a semi-enclosed and eutrophicated bay, and the subtidal sites of the east coast, a relatively oligotrophic and open environment, in May and June 2005. Water-column suspension feeders showed more negative $\delta^{13}C$ values than those of the other feeding guilds, indicating trophic linkage with phytoplankton and thereby association with pelagic food chains. In contrast, animals of the other feeding guilds, including interface suspension feeders, herbivores, deposit feeders, omnivores and predators, displayed relatively less negative $\delta^{13}C$ values than those of the water-column suspension feeders and similar with that of macroalgae, indicating exclusive use of macroalgae-derived organic matter and association with benthic food chains. Most the macrobenthic species were considered to form strong trophic links with benthic food chains. In addition, the distribution of higher $\delta^{15}N$ values in macrobenthic consumers and macroalgae at the intertidal sites of Gwangyang Bay than those at the subtidal sites of the east coast suggests that anthropogenic nutrients may enhance the macroalgal production at the intertidal sites and in turn be incorporated into the particular littoral food web in Gwangyag Bay. These results confirm the dominant role of macroalgae in supporting rocky subtidal and intertidal food webs in the Korean coasts.

암반 해안의 해조 군락에 서식하는 저서무척추동물들에 의해서 이용되는 유기물의 기원을 밝히기 위하여 저서동물과 그들의 잠재 먹이원에 대한 탄소와 질소 안정동위원소 비($\delta^{13}C$$\delta^{15}N$)값 조성을 분석하였다. 조사는 부영양화된 반폐쇄성 내만인 남해안의 광양만 연안 암반 조간대와 상대적으로 빈영양의 외양에 노출된 환경 특성을 가지는 동해안의 대진(삼척)연안의 암반 조하대를 대상으로 2005년 5월부터 6월 사이에 실시되었다. 암반에서 노출되어 서식하는 부유물 섭식자들은 다른 섭식 양식을 가지는 동물군에 비해 상대적으로 낮은 $\delta^{13}C$ 값을 가져 이들이 식물플랑크톤에서 유래하는 유기물을 주로 이용하여 표영먹이망과 강한 영양연결을 가지는 것으로 나타났다. 반면, 암반틈 속에서 서식하는 일부 부유물 섭식자를 포함한 초식동물과 퇴적물 섭식자 및 육식성 포식자들은 상대적으로 높은 $\delta^{13}C$ 값을 가져 해조류에서 유래한 유기물을 주로 이용하여 저서먹이망을 형성하였다. 따라서 부유물 섭식자를 제외하고 해조 군락을 서식처로 하는 대부분의 동물들이 해조류에서 유래한 유기물을 이용하는 저서먹이망으로 강한 영양연결을 가져 연안 암반 생태계에서 생물생산과 생물 다양성의 유지에 대한 해조류의 중요성을 잘 나타내었다. 또한 광양만과 같은 부영양화된 연안에서 상대적으로 빈영양인 동해 연안 조하대의 저서동물과 해조류에 비하여 높은 $\delta^{15}N$ 값 분포는 육상으로부터 유입되는 영양염이 암반 조간대의 해조류 생산에 이용되고 이어서 이 특정 연안 생태계의 먹이망으로 편입되는 경로를 가지는 것을 시사하였다.축과 높은 정밀도 및 정확도로 반복적인 유기탄소분석에 유용할 것으로 사료된다./TEX>개월의 편차를 보였다. 이처럼 연령을 모르는 우리나라의 혼합치 열기 아동에서 파노라마 방사선 사진을 이용하여 연령 추정시 위의 방정식을 사용한다면 비교적 정확하게 연령을 추정할 수 있으리라고 사료된다. 상아질 접착제의 종류는 별다른 영향을 주지 않은 것으로 분석되었다. 결합강도의 비교에서 컴포머가 글라스 아이어노머에 비해 우수한 것으로 평가되어 소아 환자의 유구치 심미 수복재료로서의 가능성이 입증되었다.후 중합한 군이 산소억제층의 두께가 평균 49%의 감소되었으며(p<0.05), 이들 산소를 차단한 군 간의 유의차는 없었다.며 CYP1A2유전자형에 따른 영향은 관찰할 수 없었다. CYP1A2유전자형에 따른 생체내 대사능을 관찰하는 실험이 향후 이루어 져야 할 것으로 사료된다.san film보다 큰 수증기 투과도를 보였다.적으로 유의한 차이를 보이지 않았다.y tissue layer thinning은 3 군모두에서 관찰되었고 항암 3 일군이 가장 심하게 나타났다. 이상의 실험결과를 보면 술전 항암제투여가 초기에 시행한 경우에는 조직의 치유에 초기 5 일정도까지는 영향을 미치나 7 일이 지나면 정상범주로 회복함을 알수 있었고 실험결과 항암제 투여후 3 일째 피판 형성한 군에서 피판치유가 늦어진 것으로 관찰되어 인체에서 항암 투여후 수술시기는 인체면역계가 회복하는 시기를 3주이상 경과후 적어도 4주째 수술시기를 정하는 것이 유리하리라 생각되었다.한 복합레진은 개발의 초기단계이며, 물성의 증가를 위한 연구가 필요할 것으로 사료된다.또 다른 약물인 glycyrrhetinic acid($100{\mu}M$)도 CCh 자극으로 인한 타액분비를 억제하였다. 이상의 결과로

Keywords

References

  1. Bligh, E.G. and W.F. Dyer, 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37: 911-917 https://doi.org/10.1139/o59-099
  2. Bode, A., M.T. Alvarez-Ossorio and M. Varela, 2006. Phytoplankton and macrophyte contributions to littoral food webs in the Galician upwelling estimated from stable isotopes. Mar. Ecol. Prog. Ser., 318: 89-102 https://doi.org/10.3354/meps318089
  3. Cha. S.S. and K.J. Park, 2001. Food organisms and feeding selectivity of postlarvae of slimy (Leiognathus nuchalis) in Kwangyang Bay, Korean. J. Korean Fish. Soc., 34: 666-671
  4. Cha. Y.J., E.H. Lee and D.C. Park, 1988. Studies on the processing and utilization of seaweeds. Bull. Korean Fish. Soc., 21: 42-49
  5. Cole, M.L., I. Valiela, K.D. Kroeger, G.L. Tomasky and 5 others, 2004. Assessment of $\delta^{15}N$ isotopic method to indicate anthropogenic eutrophication in aquatic ecosystems. J. Environ. Qual., 33: 124-132 https://doi.org/10.2134/jeq2004.0124
  6. Currin, C.A., S.Y. Newell and H.W. Paerl, 1995. The role of standing dead Spartina alterniflora and benthic microalgae in salt marsh food webs: considerations based on multiple stable isotope analysis. Mar. Ecol. Prog. Ser., 121: 99-116 https://doi.org/10.3354/meps121099
  7. DeNiro, N.J. and S. Epstein, 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta, 42: 495-506 https://doi.org/10.1016/0016-7037(78)90199-0
  8. DeNiro, N.J. and S. Epstein, 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta, 45: 341-351 https://doi.org/10.1016/0016-7037(81)90244-1
  9. Duggins, D.O., C.A. Simenstad and J.A. Estes, 1989. Magnification of secondary production by kelp detritus in coastal marine ecosystems. Science, 245: 170-173 https://doi.org/10.1126/science.245.4914.170
  10. Dunton, K.H. and D.M. Schell, 1987. Dependence of consumers on macroalgal (Laminaria solidungula) carbon in an arctic kelp community: $\delta^{13}C$ evidence. Mar. Biol., 93: 615-625 https://doi.org/10.1007/BF00392799
  11. Focken, U. and K. Becker, 1998. Metabolic fractionation of stable carbon isotopes: implications of different proximate compositions for studies of the aquatic food webs using $\delta^{13}C$ data. Oecologia, 115: 337-343 https://doi.org/10.1007/s004420050525
  12. Fredriksen, S., 2003. Food web studies in a Norwegian kelp forest based on stable isotope $(\delta^{13}C\;and\;\delta^{15}N)$ analysis. Mar. Ecol. Prog. Ser., 260: 71-81 https://doi.org/10.3354/meps260071
  13. Fry, B. and E.B. Sherr, 1984. $\delta^{13}C$ measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib. Mar. Sci., 27: 13-47
  14. Goering, J., V. Alexander and N. Haubenstock, 1990. Seasonal variability of stable carbon and nitrogen isotope ratios of organisms in a North Pacific bay. Estuar. Coast. Shelf Sci., 30: 239-260 https://doi.org/10.1016/0272-7714(90)90050-2
  15. Grall, J., F. Le Loc'h, B. Guyonnet and P. Riera, 2006. Community structure and food web based on stable isotopes $(\delta^{13}C\;and\;\delta^{15}N)$ analysis of a North Eastern Atlantic maerl bed. J. Exp. Mar. Biol. Ecol., 338: 1-15 https://doi.org/10.1016/j.jembe.2006.06.013
  16. Huh S.H. and S.N. Kwak, 1999. Feeding habits of Acanthogobius flavimanus in the eelgrass (Zostera marina) bed in Kwangyang Bay. J. Korean Fish. Soc., 32: 10-17
  17. Huh S.H. and S.N. Kwak. 1998. Feeding habits of Conger myriaster in the eelgrass (Zostera marina) bed in Kwangyang Bay. J. Korean Fish. Soc., 31: 665-672
  18. Jenkins, S.R. and S.J. Hawkins, 2003. Barnacle larval supply to sheltered rocky shores: a limiting factor?. Hydrobiologia, 503: 143-151 https://doi.org/10.1023/B:HYDR.0000008496.68710.22
  19. Jennings, S., O. Renones, B. Morales-Nin, N.V.C. Polunin., J. Moranta and J. Coll. 1997. Spatial variation in the $^{15}N\;and\;^{13}C$ stable isotope composition of plants, invertebrates and fishes on Mediterranean reefs: implications for the study of trophic pathways. Mar. Ecol. Prog. Ser., 146: 109-116 https://doi.org/10.3354/meps146109
  20. John, D.M., S.J. Hawkins and J.H. Price, 1992. Plant-animal intractions in the marine benthos. Clarendon Press, Oxford, 565pp
  21. Kang, C.K., E.J. Choy, S.K. Paik, H.J. Park, K.S. Lee and S. An, 2007a. Contributions of primary organic matter sources to macroinvertebrate production in an intertidal salt marsh (Scirpus triqueter) ecosystem. Mar. Ecol. Prog. Ser. 334: 131-143 https://doi.org/10.3354/meps334131
  22. Kang, C.K., J.B. Kim, K.S. Lee, J.B. Kim, P.Y. Lee and J.S. Hong, 2003. Trophic importance of benthic microalgae to macrozoobenthos in coastal bay systems in Korea: dual stable C and N isotope analyses. Mar. Ecol. Prog. Ser., 259: 79-92 https://doi.org/10.3354/meps259079
  23. Kang, C.K., Y.S. Kang, E.J. Choy, D.S. Kim, B.T. Shim and P.Y. Lee, 2007b. Condition, reproductive activity, and gross biochemical composition of the Manila clam, Tapes philippinarum in natural and newly created sandy habitats of the southern coast of Korea. J. Shellfish Res., 26: 401-412 https://doi.org/10.2983/0730-8000(2007)26[401:CRAAGB]2.0.CO;2
  24. Kang. C.-K., J.B. Kim, J.B. Kim, P.-Y. Lee and J.-S. Hong, 2001. The importance of intertidal benthic autotrophs to the Kwangyang Bay (Korea) food webs: $\delta^{13}C$ analysis. J. Korean Soc. Oceanogr., 36: 109-123
  25. Kerby, N.W. and J.A. Raven, 1985. Transport and fixiation of inorganic carbon by marine algae. Adv. Bot. Res., 11: 77-123
  26. Kwak, T.J. and J.B. Zedler, 1997. Food web analysis of southern California coastal wetlands using multiple stable isotopes. Oecologia, 110: 262-277 https://doi.org/10.1007/s004420050159
  27. Lee, K.W., C.H. Shon and S.C. Chung. 1998. Marine algal flora and grazing effect of sea urchins in the coastal waters of Cheju Island. J. of Aquaculture, 11: 401-419
  28. Lee, Y.S., C.K. Kang, Y.K. Choi and S.Y. Lee, 2007. Origin and spatial distribution of organic matter at Gwangyang Bay in the fall. J. Korean Soc. Oceanogr., 12: 1-8
  29. Lee, Y.S., J.S. Lee, R.H. Jung, S.S. Kim, W.J Go, K.Y. Kim and J.S. Park, 2001. Limiting nutrient of phytoplankton growth in Gwangyang Bay. J. Korean Soc. Oceanogr., 6: 201-210
  30. McClelland, J.W. and I. Valiela, 1998. Changes in food web structure under the influence of increased anthropogenic nitrogen inputs to estuaries. Mar. Ecol. Prog. Ser., 168: 259-271 https://doi.org/10.3354/meps168259
  31. McClelland, J.W., I. Valiela and R.H. Michener, 1997. Nitrogen-stable isotope signatures in estuarine food webs: a record of increasing urbanization in coastal watersheds. Limnol. Oceanogr., 42: 930-937 https://doi.org/10.4319/lo.1997.42.5.0930
  32. McLusky, D.S., 1989. The Estuarine ecosystem, 2nd ed. Chapman and Hall, New York, 215pp
  33. Michener, R.H. and D.M. Schell, 1994. Stable isotope ratios as tracers in marine aquatic food webs. In: Lajtha K, Michener RH (eds) Stable Isotopes in Ecology and Environmental Science. Blackwell Scientific Publications, Oxford, pp. 138-157
  34. Minagawa, M. and E. Wada, 1984. Stepwise enrichment of $^{15}N$ along food chains: further evidence and the relation between $\delta^{15}N$ and animal age. Geochim. Cosmochim. Acta, 48: 1135-1140 https://doi.org/10.1016/0016-7037(84)90204-7
  35. Mutchler, T., M.J. Sullivan and B. Fry, 2004. Potential of $^{15}N$ isotope enrichment to resolve ambiguities in coastal trophic relationships. Mar. Ecol. Prog. Ser., 266: 27-33 https://doi.org/10.3354/meps266027
  36. Page, H.M., 1997. Importance of vascular plant and algal production to macro-invertebrate consumers in a southern California salt marsh. Estuar. Coast. Shelf Sci., 45: 823-834 https://doi.org/10.1006/ecss.1997.0254
  37. Park. J.H. and S. Rho, 2002. Study of the fish fauna associated with drifting seaseed in northeastern coastal waters of Cheju, Korea. Korean J. Ichthyol., 14: 36-44
  38. Peterson, B.J. and B. Fry, 1987. Stable isotopes in ecosystem studies. Annual Rev. Ecol. Evol. Systym., 18: 293-320 https://doi.org/10.1146/annurev.es.18.110187.001453
  39. Riera, P., L.J. Stal and J. Nieuwenhuize, 2000. Heavy $\delta^{15}N$ in intertidal benthic algae and invertebrates in the Scheldt Estuary (The Netherlands): effect of riverine nitrogen inputs. Estuar. Coast. Shelf Sci., 51: 365-372 https://doi.org/10.1006/ecss.2000.0684
  40. Rosenthal, R.J., W.D. Clarke and P.K. Dayton, 1974. Ecology and natural history of a stand of giant kelp, Macrocystis pyrifera, off Del Mar, California. Fish. Bull., 72: 670-684
  41. Tan, F.C., D.L. Cai and J.M. Edmond, 1991. Carbon isotope geochemistry of the Changjiang Estuary. Estuar. Coast. Shelf Sci., 32: 395-403 https://doi.org/10.1016/0272-7714(91)90051-C
  42. Terawaki, T., H. Hasegawa, S. Arai and M. Ohno, 2001. Management-free thechniques for restoration of Eisenia and Ecklonia beds along the central Pacific coast of Japan. J. Appl. Phycol., 13: 13-17 https://doi.org/10.1023/A:1008135515037
  43. Vander Zanden, M.J, and J.B. Rasmussen, 2001. Variation in $^{15}N\;and\;^{13}C$ trophic fractionation: implications for aquatic food web studies. Limnol. Oceanogr., 46: 2061-2066 https://doi.org/10.4319/lo.2001.46.8.2061
  44. Yatsuya, K. and H. Nakahara, 2004. Diet and stable isotope ratios of gut content and gonad of the sea urchin Anthocidaris crassispina (A. Agassiz) in two different adjacent habitats, the Sargassum area and Corallina area. Fish. Sci., 70: 285-292 https://doi.org/10.1111/j.1444-2906.2003.00802.x
  45. Yoo, J.W., H.J. Lee, H.J. Kim, C.G. Lee, C.S. Kim, J.S. Hong, J.P. Hong and D.S. Kim, 2007. Intraction between invertebrate grazers and seaweeds in the east coast of Korea. J. Korean Soc. Oceanogr., 12: 125-132