• Title/Summary/Keyword: THD analysis

Search Result 181, Processing Time 0.023 seconds

Comparative Analysis of Pulse Width Modulation Methods for Improving the Lifetime of DC-link Capacitors of NPC Inverters (NPC 인버터의 DC-link 커패시터 수명 향상을 위한 전압 변조 방법 비교 평가)

  • Choi, Jae-Heon;Choi, Ui-Min
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.4
    • /
    • pp.291-296
    • /
    • 2022
  • Capacitor is one of the reliability-critical components in power converters. The lifetime of the capacitor decreases as the operating temperature increases, and power losses caused by capacitor current are the main cause of the capacitor temperature increase. Therefore, various studies are being conducted to improve the lifetime of the capacitor by reducing the current of DC-link capacitors. In this study, pulse width modulation methods proposed for improving the lifetime of DC-link capacitors of the three-level NPC inverter are comparatively analyzed. The lifetime evaluation of the DC-link capacitor under different modulation methods is performed at component level first and then system level by considering all capacitors by applying Monte Carlo simulation. Furthermore, their effects on the efficiency and THD of the output current are also considered.

Analysis for forging of trochoidal gears (트로코이드 기어의 단조 해석)

  • Cho, Hae Yong;Min, Gyu Sik;Choi, Jongung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.9
    • /
    • pp.77-83
    • /
    • 1996
  • This paper describes forging of trochoidal gears, which are being widely used in timing belt pulley, pump pulley etc., as a series of development of the simulator for non-axisymmetric elements. Kinematically admissible velocity fields for forging of trochoidal gear were proposed and the loads were calculated by numerical method. When the simulation was carried out, half pith of gear was divided into 6 deformation regions which have different velicity fields by assumptions and boundary conditions. The neutral surface was introduced into forging of trochoidal gears with flat punch and, for each step, it is assumed as a circle with its radius r$_{n}$. The experimental set-up was installed in 200 ton hydraulic press for forging. The billets, of A1 2218 aluminum alloy, were slightly phosphate-coated. It was shown that thd theoretical solutions, as upper bound, are useful to predict the forging load for forging of trochoidal gears, because thdt give estimates that are substantially higher than experimental loads.s.

  • PDF

Analysis and Implementation of PS-PWAM Technique for Quasi Z-Source Multilevel Inverter

  • Seyezhai, R.;Umarani, D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.688-698
    • /
    • 2018
  • Quasi Z-Source Multilevel Inverter (QZMLI) topology has attracted grid connected Photovoltaic (PV) systems in recent days. So there is a remarkable research thrust in switching techniques and control strategies of QZMLI. This paper presents the mathematical analysis of Phase shift- Pulse Width Amplitude Modulation (PS-PWAM) for QZMLI and emphasizes on the advantages of the technique. The proposed technique uses the maximum and minimum envelopes of the reference waves for generation of pulses and proportion of it to generate shoot-through pulses. Hence, it results in maximum utilization of input voltage, lesser switching loss, reduced Total Harmonic Distortion (THD) of the output voltage, reduced inductor current ripple and capacitor voltage ripple. Due to these qualities, the QZMLI with PS-PWAM emerges to be the best suitable for PV based grid connected applications compared to Phase shift-Pulse Width Modulation (PS-PWM). The detailed math analysis of the proposed technique has been disclosed. Simulation has been performed for the proposed technique using MATLAB/Simulink. A prototype has been built to validate the results for which the pulses were generated using FPGA /SPARTAN 3E.

Harmonic Analysis and Output Filter Design of NPC Multi-Level Inverters (NPC 멀티레벨 인버터의 고조파 분석 및 출력 필터 설계)

  • Kim, Yoon-Ho;Bang, Sang-Seok;Kim, Kwang-Seob;Kim, Soo-Hong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.135-141
    • /
    • 2006
  • In this paper, LC output filters are designed to reduce output harmonics and harmonic analysis are peformed. Generally, multilevel inverters are used in high power application and operates with low switching frequency, which, in turn, generates large output harmonics. Output filters we used to reduce output harmonics. The design approach to reduce output harmonics of the 31eve1 multilevel inverter is discussed and DSP(TMS320C31) is used for the digital control of the system. The design example is given. The designed system is verified by simulation and experiment.

Characteristic Analysis of Power Compensation Condenser Considering Voltage Harmonics (전압 고조파를 고려한 역률보상용 콘덴서의 특성 분석)

  • Kim, Jong-Gyeum;Lee, Dong-Ju
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.141-145
    • /
    • 2010
  • Most of the industrial loads includes the non-linear load as well as the linear load because there are many kinds of power conversion equipments at the input stage of the load in distribution network. The non-linear load causes the distortion of voltage waveform at PCC because the non-linear load generates the harmonic current. As a result, various voltage harmonics are existed at PCC depending on the current harmonics from the non-linear load. And, a series reactor is generally connected to the power capacitor in series to attenuate the distortion of voltage waveform and to reduce an inrush current of power capacitor. Also, harmonic current of power capacitor is highly dependent on the series reactor because it is operated with the power capacitor as a passive filter against nonlinear loads. Then, these capacitors might be damaged by the excessive voltage and current harmonic components. In this paper, we presented how to select the capacitor and series reactor to meet the requirement of the voltage distortion at PCC and analyzed the voltage, current and capacity rating of the power capacitor by the computer simulation to ensure the safe operation of power capacitor when the voltage harmonics at PCC are existed. Also, the analysis data were compared with the experimental measurements for the verification.

Harmonics Analysis and Reduction of Incheon International Airport (인천국제공항 여객터미널의 고조파분석에 의한 저감대책 강구)

  • Kim, Young-Ha;Lee, Sung-Jun;Kim, Dong Kun;Oh, Suk-Hyun;Kim, Mi-Ye
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.1
    • /
    • pp.87-93
    • /
    • 2005
  • In this paper, we perform the harmonic filter design for Incheon international airport, especially passenger terminal based on the results of measurement and analysis. Also, we show the waveform of machines which produce harmonics as a harmonic source. For harmonic filter design, we propose the APF(Active Power Filter) and ZSF(Zero Sequence Filter) design. Also, we simulate the filter effects using EDSA package. The results show the effectiveness of the method.

Analysis of Pulse Width Modulation Schemes for Electric Vehicle Power Converters (전기차용 전력변환장치의 펄스 폭 변조 기법 분석)

  • Quach, Ngoc-Thinh;Chae, Sang Heon;Kim, Eel-Hwan;Yang, Seung-Yong;Boo, Chang-Jin;Kim, Ho-Chan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2225-2231
    • /
    • 2016
  • In order to overcome the problem of fossil fuel energy, electric vehicle (EV) has been used in recent years. The important issues of EV are driving distance and lifetime related to EV efficiency. A voltage source converter is one of the main components of EV which can be operated with various pulse width modulation (PWM) schemes such as continuous PWM schemes and discontinuous PWM schemes. These PWM schemes will cause the effects on the efficiency of converter system and the lifetime of EV. Therefore, this paper proposes an analysis of the PWM schemes for the power converter on the EV. The objective is to find out a best solution for the EV by comparing the total harmonic distortion (THD) and transient response between the various PWM schemes. The operation of traction motor on the EV with the PWM schemes will be verified by using Psim simulation program.

Design of In-Wheel Motor for Automobiles Using Parameter Map (파라미터 맵을 이용한 차량용 인휠 전동기의 설계)

  • Kim, Hae-Joong;Lee, Choong-Sung;Hong, Jung-Pyo
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.3
    • /
    • pp.92-100
    • /
    • 2015
  • Electric Vehicle (EV) can be categorized by the driving method into in-wheel and in-line types. In-wheel type EV does not have transmission shaft, differential gear and other parts that are used in conventional cars, which simplifies and lightens the structure resulting in higher efficiency. In this paper, design method for in-wheel motor for automobiles using Parameter Map is proposed, and motor with continuous power of 5 kW is designed, built and its performance is verified. To decide the capacity of the in-wheel motor that meets the automobile's requirement, Vehicle Dynamic Simulation considering the total mass of vehicle, gear efficiency, effective radius of tire, slope ratio and others is performed. Through this step, the motor's capacity is decided and initial design to determine the motor shape and size is performed. Next, the motor parameters that meet the requirement is determined using parametric design that uses parametric map. After the motor parameters are decided using parametric map, optimal design to improve THD of back EMF, cogging torque, torque ripple and other factors is performed. The final design was built, and performance analysis and verification of the proposed method is conducted by performing load test.

Thermohydrodynamic Analysis and Pad Temperature Measurement of Tilting Pad Journal Bearing with Worn Pad (표면이 마모된 틸팅 패드 저널베어링의 열윤활 해석 및 온도 측정)

  • Lee, Donghyun;Sun, Kyungho;Kim, Byungock;Kang, Donghyuk
    • Tribology and Lubricants
    • /
    • v.33 no.4
    • /
    • pp.134-140
    • /
    • 2017
  • With the increase in adoption of tilting pad journal bearings (TPJBs), various failure mechanisms related to TPJBs have been reported, of which pad wear is a frequently reported one. Pad wear causes change in geometry of the bearing, which can sometimes result in the failure of the entire system. The objective of this research is to investigate the influence of pad wear on the pad temperature, which is one of the widely used condition monitoring methods for TPJBs. For the theoretical investigation, thermohydrodynamic (THD) analysis was conducted by solving the generalized Reynolds equation and the 3D energy equation. The results of the analysis show that the temperature of the loaded pad increases while that of the unloaded pad decreases, when there is wear on the loaded pads. In addition, the minimum film thickness decreases with an increase in the wear depth. A validation test was conducted with a test rig, which mimics the axial turbine when a test rotor is supported by two TPJBs. The test bearing consists of five pads with a diameter of 60 mm, and a resistance temperature detector (RTD) is installed in the pad for temperature monitoring. The test was performed by replacing the two loaded pads with the worn pad. The test result for the TPJB with wear depth of $30{\mu}m$ show that the temperatures of the loaded pads are $8^{\circ}C$ higher and that of the unloaded pad is $2.5^{\circ}C$ lower than that of the normal TPJB. In addition, the predicted pad temperature shows good agreement with the measured pad temperatures.

Thermo-Fluid-Structure Coupled Analysis of Air Foil Thrust Bearings using Shell Model (쉘 모델을 이용한 공기 포일 스러스트 베어링의 열-유체-구조 연동 해석)

  • Jong wan Yun;So yeon Moon;Sang-Shin Park
    • Tribology and Lubricants
    • /
    • v.40 no.1
    • /
    • pp.17-23
    • /
    • 2024
  • This study analyzes the thermal effects on the performance of an air foil thrust bearing (AFTB) using COMSOL Multiphysics to approximate actual bearing behavior under real conditions. An AFTB is a sliding-thrust bearing that uses air as a lubricant to support the axial load. The AFTB consists of top and bump foils and supports the rotating disk through the hydrodynamic pressure generated by the wedge effect from the inclined surface of the top foil and the elastic deformation of the bump foils, similar to a spring. The use of air as a lubricant has some advantages such as low friction loss and less heat generation, enabling air bearings to be widely used in high-speed rotating systems. However, even in AFTB, the effects of energy loss due to viscosity at high speeds, interface frictional heat, and thermal deformation of the foil caused by temperature increase cannot be ignored. Foil deformation derived from the thermal effect influences the minimum decay in film thickness and enhances the film pressure. For these reasons, performance analyses of isothermal AFTBs have shown few discrepancies with real bearing behavior. To account for this phenomenon, a thermal-fluid-structure analysis is conducted to describe the combined mechanics. Results show that the load capacity under the thermal effect is slightly higher than that obtained from isothermal analysis. In addition, the push and pull effects on the top foil and bump foil-free edges can be simulated. The differences between the isothermal and thermal behaviors are discussed.