• Title/Summary/Keyword: TGA-FTIR

Search Result 132, Processing Time 0.022 seconds

Synthesis of Montmorillonite/Poly(acrylic acid-co-2-acrylamido-2-methyl-1-propane sulfonic acid) Superabsorbent Composite and the Study of its Adsorption

  • Zhu, Linhui;Zhang, Lili;Tang, Yaoji
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1669-1674
    • /
    • 2012
  • A novel superabsorbent composite was prepared by intercalation polymerization of acrylic acid (AA) and 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS) in the presence of montmorillonite (MMT), using ammonium persulfate (APS) as an initiator and $N,N'$-methylenebisacrylamide (MBA) as a cross linker. The superabsorbent composite was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Maximum absorbency of the composite in distilled water and 0.9% sodium chloride solution was 722 and 108 g/g, respectively. The composite was used for removal of heavy metal ions from aqueous solutions. Maximum amount of adsorption for $Ni^{2+}$, $Cu^{2+}$ and $Pb^{2+}$ was 211.0, 159.6 and 1646.0 mg/g, respectively, and the adsorption was in accordance with both Langmuir and Freundlich model. The composite could be regenerated and reused in wastewater treatment.

Functionalization of polyethylene by graft copolymerization for separation processes

  • Kaur, Inderjeet;Gupta, Nitika;Kumari, Vandna
    • Advances in materials Research
    • /
    • v.2 no.1
    • /
    • pp.15-36
    • /
    • 2013
  • Incorporation of polar functional moieties into polyethylene (PE) film has been achieved by graft copolymerization of polar monomers such as methacrylic acid (MAAc) and acrylamide (AAm) on to PE film, preirradiated with ${\gamma}$-rays from $^{60}Co$ source, using benzoyl peroxide (BPO) as initiator in aqueous medium. Percentage of grafting of MAAc and AAm was determined as a function of irradiation dose, monomer and initiator concentration, temperature, reaction time and amount of water. Maximum percentage of grafting of MAAc (1453%) and AAm (21.28%) was obtained at [MAAc] = $235.3{\times}10^{-2}$ mol/L, [AAm] = $23.4{\times}10^{-2}$ mol/L, [BPO] = $5.5{\times}10^{-2}$ mol/L and $16.5{\times}10^{-2}$ mol/L at $80^{\circ}C$, $90^{\circ}C$ in 180 min and 90 min respectively. The grafted PE films were characterized by FTIR, Thermogravimetric analysis (TGA) Scanning Electron Micrography (SEM) and X-ray diffraction methods. Some selective properties of grafted films such as swelling behavior, ion and metal uptake have been carried out. The biodegradation studies of the grafted PE films have also been investigated. The grafted films developed superior swelling behavior with maximum swelling (480%) in water as compared to pristine PE (13.55%), better thermal stability and ion and metal uptake studies showed promising results that can be effectively used for desalination of brackish water and separation of metals from the industrial effluents.

Synthesis and Properties of Poly[oxy(arylene)oxy(tetramethyldisilylene)]s via Melt Copolymerization Reaction

  • Jung, Eun Ae;Park, Young Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1637-1642
    • /
    • 2013
  • We carried out the melt copolymerization reactions of 1,2-bis(diethylamino)tetramethyldisilane with several aryldiols such as, 4,4'-biphenol, 4,4'-isopropylidenediphenol, 9H-fluoren-9,9-dimethanol, and 4,4'-(9-fluorenylidene) bis(2-phenoxyethanol) to afford poly[oxy(arylene)oxy(tetramethyldisilylene)]s containing fluorescent aromatic chromophore groups in the polymer main chain: poly[oxy(4,4'-biphenylene)oxy(tetramethyldisilylene)], poly[oxy{(4,4'-isopropylidene) diphenylene}oxy(tetramethyldisilylene)], poly[oxy(9H-fluorene-9,9-dimethylene) oxy(tetramethyldisilylene)], and poly[oxy{4,4'-(9-fluorenylidene)bis(2-phenoxyethylene)}oxy(tetramethyldisilnylene)]. These prepared materials are soluble in common organic solvents such as $CHCl_3$ and THF. The obtained polymers were characterized by several spectroscopic methods such as $^1H$, $^{13}C$, and $^{29}Si$ NMR. Further, FTIR spectra of all the polymers exhibited characteristic Si-O stretching frequencies at 1014-1087 $cm^{-1}$. These polymeric materials in THF showed strong maximum absorption peaks at 268-281 nm, strong maximum excitation peaks at 263-291 nm, and strong maximum fluorescence emission bands at 314-362 nm due to the presence of tetramethyldisilylene and several arylene chromophores in the polymer main chain. TGA thermograms indicated that most of the polymers were stable up to $200^{\circ}C$ with a weight loss of 3-16% in nitrogen.

Synthesis, Thermal Decomposition Pattern and Single Crystal X-Ray Studiesof Dimeric [Cu(dmae)(OCOCH3)(H2O)]2: A Precursor for the Aerosol Assisted Chemical Vapour Deposition of Copper Metal Thin Films

  • Mazhar, Muhammad;Hussain, S.M.;Rabbani, Faiz;Kociok-Kohn, Gabriele;Molloy, Kieran C.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1572-1576
    • /
    • 2006
  • A dimeric precursor, $[Cu(dmae)(OCOCH_3)(H_2O)]_2$ for the CVD of copper metal films, (dmaeH = N,N-dimethylaminoethanol) was synthesized by the reaction of copper(II) acetate monohydrate ($Cu(OCOCH_3)_2{\cdot}H_2O$) and dmaeH in toluene. The product was characterized by m.p. determination, elemental analysis and X-ray crystallography. Molecular structure of $[Cu(dmae)(OCOCH_3)(H_2O)]_2$ shows that a dimeric unit $[Cu(dmae)(OCOCH_3)(H_2O)]_2$ is linked to another through hydrogen bond and it undergoes facile decomposition at 300 C to deposit granular copper metal film under nitrogen atmosphere. The decomposition temperature, thermal behaviour, kinetic parameters, evolved gas pattern of the complex, morphology, and the composition of the film were also investigated.

Yield enhancement of matrix precursor in short carbon fiber reinforced randomly oriented carbon/carbon composite

  • Raunija, Thakur Sudesh Kumar;Sharma, Sharad Chandra;Verma, Anil
    • Carbon letters
    • /
    • v.19
    • /
    • pp.57-65
    • /
    • 2016
  • Isroaniso matrix precursor synthesized from commercially available petroleum pitch was stabilized in air. The influence of oxygen mass gain during stabilization on the yield of matrix precursor was studied. Additionally, the influence of pressure on the yield of the stabilized matrix precursor in a real system was studied. The fourier transform infrared spectrometry (FTIR), thermogravimetric analysis (TGA), yield, yield rate, and yield impact were used to check the effect of stabilization and pressure on the yield of the matrix precursor and the end properties of the composite thereafter. The results showed that the yield increased with stabilization duration up to 20 h whereas it decreased for stabilization duration beyond 20 h. Further results showed that the stabilized matrix precursor for a duration of 5 h could withstand almost two-fold greater hot-pressing pressure without resulting in exudation as compared to that of a 1 h stabilized matrix precursor. The enhanced hot-pressing pressure significantly improved the yield of the matrix precursor. As a consequence, the densification and mechanical properties were increased significantly. Further, the matrix precursor stabilized for a duration of 20 h or more failed to provide proper and uniform binding of the reinforcement.

Melt Copolymerization Reactions between 1,3-Bis(diethylamino)tetramethyldisiloxane and Aryldiol Derivatives

  • Jung, In-Kyung;Park, Young-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1303-1309
    • /
    • 2011
  • Melt copolymerization reactions of bis(diethylamino)tetramethyldisiloxane with several aryldiols were carried out to afford poly(carbotetramethyldisiloxane)s containing fluorescent aromatic chromophore groups in the polymer main chain: poly{oxy(4,4'-biphenylene)oxytetramethyldisiloxane}, poly{oxy(1,4-phenylene)oxytetramethyldisiloxane}, poly[oxy{(4,4'-isopropylidene)diphenylene}oxytetramethyldisiloxane], poly[oxy{(4,4'-hexafluoroisopropylidene)diphenylene}oxytetramethyldisiloxane], poly{oxy(2,6-naphthalene)oxytetramethyldisiloxane}, poly[oxy{4,4'-(9-fluorenylidene)diphenylene}oxytetramethyldisiloxane], poly{oxy(fluorene-9,9-dimethylene)oxytetramethyldisiloxane}, and poly[oxy{4,4'-(9-fluorenylidene)bis(2-phenoxyethylene)}oxytetramethyldisiloxane]. These materials are soluble in common organic solvents such as $CHCl_3$ and THF. The FTIR spectra of all the polymers exhibit the characteristic Si-O-C stretching frequencies at 1021-1082 $cm^{-1}$. In the THF solution, the polymeric materials show strong maximum absorption peaks at 215-311 nm, with strong maximum excitation peaks at 250-310 nm, and strong maximum fluorescence emission bands at 310-360 nm. TGA thermograms indicate that most of the polymers are stable up to $200^{\circ}C$ with a weight loss of less than 10% in nitrogen.

Purification of Multi Walled Carbon Nanotubes (Mwcnts) Synthesized by Arc Discharge Set Up

  • Malathi, Y.;Padya, Balaji;Prabhakar, K.V.P.;Jain, P.K.
    • Carbon letters
    • /
    • v.11 no.3
    • /
    • pp.184-191
    • /
    • 2010
  • Carbon nanotubes are unique tubular structures of nanometer diameter and large length/diameter ratio. The nanotubes may consist of one up to tens and hundreds of concentric shells of carbons with adjacent shells separation of ~0.34 nm. Multiwalled carbon nanotubes were synthesized by arc-discharge technique. MWCNTs were formed at the cathode deposit along with other carbonaceous materials like amorphous carbon, graphite etc. However, to get the best advantage of carbon nanotubes in various advanced applications, these undesired carbonaceous materials to be removed which is a challenging task. In the present study, various techniques were tried out for purifying MWCNTs such as physical filtration, chemical treatment and thermal annealing. SEM, FTIR, TGA and BET techniques were used to characterize the CNTs at various stages. Results shows that suitable chemical treatment followed by thermal annealing under controlled flow of oxygen gives the better route for purification of carbon nanotubes.

Synthesis and Characterization of Cu2+-Perfluorophthalocyanine Incorporated SBA15

  • Oh, Mi-Ok;Park, Sung Soo;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.7 no.3
    • /
    • pp.10-15
    • /
    • 2006
  • After anchoring 3-(2-aminoethylamino)propyltriethoxysilane (APTES) onto the surfaces of the channels within ordered mesoporous silica, SBA-15, we dispersed $Cu^{2+}$-perfluorophthalocyanine into the modified SBA-15 channels. From small-angle X-ray scattering (SAXS) patterns and transmission electron microscopy (TEM) images, we confirmed that both the calcined and $Cu^{2+}$-perfluorophthalocyanine-incorporated SBA-15 samples possessed ordered periodic structures and hexagonal symmetry lattices (p6mm). The value of the $d_{100}$ spacing was decreased after the incorporation of $Cu^{2+}$-perfluorophthalocyanine into the modified SBA-15 channels. We used FTIR and UV-Vis spectroscopy and thermogravimetric analysis (TGA) to characterize both the modified SBA-15 and the $Cu^{2+}$-perfluorophthalocyanine-incorporated SBA-15 samples. From scanning electron microscopy (SEM) images and $N_2$ sorption measurements, we found that the $Cu^{2+}$-perfluorophthalocyanine units were incorporated within the modified SBA-15 channels, rather than on the external surfaces of the modified SBA-15 channels.

  • PDF

Copolymerization of N-Vinyl Pyrrolidone with Functionalized Vinyl Monomers: Synthesis, Characterization and Reactivity Relationships

  • Vijaykumar, S.;Prasannkumar, S.;Sherigara, B.S.;Shelke, N.B.;Aminabhavi, Tejraj M.;Reddy, B.S.R.
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.1003-1009
    • /
    • 2009
  • Copolymers of N-vinylpyrrolidone (NVP) comonomer with styrene (St), hydroxypropyl methacrylate (HPMA) and carboxyphenyl maleimide (CPMI) were synthesized by free radical polymerization using 2,2'-azobisisobutyronitrile (AIBN) initiator in 1,4-dioxane solvent. The copolymers formed were characterized by FTIR, $^1H$ NMR and $^{13}C$ NMR techniques and their thermal properties were studied by DSC and TGA. Copolymer composition was determined by $^1H$ NMR and/or by elemental analysis and monomer reactivity ratios (MRR) were estimated by the linear methods of Kelen-Tudos (K-T) and extended Kelen-Tudos (EK-T) and the non-linear approach. Copolymers of St and HPMA with NVP formed blocks of one of the monomer units, whereas alternating copolymers were obtained in CPMI-NVP, depending upon the side chain substitution. The MRR values are discussed in terms of monomer structural properties such as electronegativity and electron delocalization. The sequence distribution of monomers in the copolymers was studied by statistical method based on the average reactivity ratios obtained by EK-T method.

Synthesis and Characterization of Reduced Graphene Oxide/Gelatin Composite Films (환원된 산화그래핀/젤라틴 복합필름의 합성과 분석)

  • Chen, Guangxin;Qiao, Congde;Xu, Jing;Yao, Jinshui
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.484-490
    • /
    • 2014
  • Reduced graphene oxide (RGO) was fabricated using gelatin as a reductant, and it could be stably dispersed in gelatin solution without aggregation. A series of RGO/gelatin composite films with various RGO contents were prepared by a solution-casting method. The structure and thermal properties of the RGO/gelatin composite films were characterized by UV-vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), differential scanning calorimeter (DSC) and thermal gravimetric analysis (TGA). The addition of RGO enhances the degree of crosslinking of gelatin films and decreases the swelling ability of the gelatin films in water, indicating that RGO/gelatin composite films have a better wet stability than gelatin films. The glass transition temperature ($T_g$) of gelatin films is also increased with the incorporation of RGO. The presence of RGO slightly increases the degradation temperature of gelatin films due to the very low content of RGO in the composite films. Since gelatin is a natural and nontoxic biomacromolecule, the RGO/gelatin composite films are expected to have potential applications in the biomedical field.