• 제목/요약/키워드: TG/DTG

검색결과 45건 처리시간 0.025초

Synthesis, spectral, thermal, structural study and theoretical treatment of new complexes of mannich base with Ni(II) and study of cytotoxicity effect on (Hepa-2) cell line and antimicrobial activity

  • Omar H. Al-Obaidi
    • 분석과학
    • /
    • 제36권2호
    • /
    • pp.70-79
    • /
    • 2023
  • The synthesis of the Mannich base as a ligand (L) N-(morpholino (phenyl) methyl) acetamide is the subject of this study. Elemental analyses, FT-IR spectra, UV-vis, 1H-NMR, and magnetic measurements were used to confirm the synthesis of the [Ni(L)2]Cl2 complex, thermal analysis (TG/DTG), atomic absorption, and scanning, and structurally explained as electron microscopy (SEM), and X-ray powder diffraction (XRD) methods. The melting point of the complex and its molar conductivity were also measured. The suggested geometries of the complexes formed have a tetrahedral structure, according to the data acquired using various techniques. Theoretical approaches to the complex formation have been investigated. For molecular mechanics and semi-empirical calculations, the HYPERCHEM6 program had been used. The effect of the novel Ni(II) complex on the cancer cell Hepa-2 (human hepatocellular ademocarcinoma), that is the human laryngeal cancer, was studied. It has been found that these ligand and complex have potent effects on the cancer cell. The antibacterial activity of the free ligand and its complex was evaluated against two kinds of human pathogenic bacteria. The first category is Gram-positive (Staphylococcus aureas, epiderimids), whereas the second group is Gram-negative (Psedamonas aeruginosa, Escherichia coli) (from the diffusion method). Finally, it was discovered that various chemicals had varied growth-inhibiting effects on bacteria.

Synthesis, characterization, and biological significance of mixed ligand Schiff base and alizarin dye-metal complexes

  • Laith Jumaah Al-Gburi;Taghreed H. Al-Noor
    • 분석과학
    • /
    • 제37권4호
    • /
    • pp.239-250
    • /
    • 2024
  • This study reports the synthesis of a bi-dentate Schiff base ligand (L), 7-(2-((2-formylbenzylidene) amino)-2-phenylacetamido)-3-methyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid, prepared from phthalaldehyde and cephalexin antibiotic. The synthesized Schiff base ligand (L) and the secondary ligand alizarin (Az) are used to prepare the new complexes [M(Az)2(L)] and [Cr(Az)2(L)]Cl, where M = Mn(II), Co(II), Ni(II), Cu(II), and Zn(II). The mode of bonding of the Schiff base has been characterized by UV-Visible, FT-IR, Mass, 1H-, and 13C-NMR spectroscopic techniques, and micro elemental analysis (CHNS). The complexes were characterized using UV-Vis, FT-IR, molar conductance, magnetic moment, and thermal analysis (TG/DTG). The molar conductance data revealed that the complexes are non-electrolytes except for [Cr(L)(Az)2]Cl, which is an electrolytic type 1:1. The Schiff base and its complexes have been tested for their biological activity against two strains of bacteria and one fungus. When screened against gram-positive and gram-negative pathogens, the Az and L ligands and their complexes showed potential antimicrobial activity.

굴참나무 촉매열분해에 바이오매스 반탄화가 미치는 영향 (The Effect of Biomass Torrefaction on the Catalytic Pyrolysis of Korean Cork Oak)

  • 이지영;이형원;김영민;박영권
    • 공업화학
    • /
    • 제29권3호
    • /
    • pp.350-355
    • /
    • 2018
  • 본 연구에서는 굴참나무의 열분해 및 촉매 열분해에 바이오매스 반탄화가 미치는 영향에 대한 연구를 수행하였다. 굴참나무와 반탄화된 굴참나무의 열분해 및 촉매 열분해 거동은 열중량분석 결과와 회분식반응기를 이용한 급속열분해 반응에서 얻어진 바이오오일의 생성물분포를 비교하여 평가하였다. 굴참나무와 반탄화된 굴참나무의 열중량 곡선 및 미중열중량곡선은 굴참나무 내 헤미셀룰로오스의 제거량은 반탄화 온도 및 시간을 증가시킴에 따라 증가됨을 나타내었다. 굴참나무의 반탄화과정에서 헤미셀룰로오스의 제거로 굴참나무 내 셀룰로오스와 리그닌의 함량이 증가되기 때문에 열분해 과정에서 오일의 수율은 감소하고 고형 촤 수율은 증가하였다. 반탄화 굴참나무의 열분해 오일 중 레보글루코산과 페놀류의 선택도는 굴참나무 열분해 오일에 비해 높았다. 바이오오일 중 방향족 화합물의 함량은 HZSM-5 ($SiO_2/Al_2O_3=30$) 상에서 굴참나무 및 반탄화된 굴참나무의 촉매열분해를 적용함으로써 증가되었다. 굴참나무에 비해, 반탄화 굴참나무는 HZSM-5를 이용한 촉매 열분해를 통한 방향족화합물 형성에 더 높은 효율을 보였고 더 높은 반탄화 온도($280^{\circ}C$) 및 반응온도($600^{\circ}C$)를 적용함으로써 극대화되었다.

연일층군 이암에서 산출되는 알루미늄 황산염 광물의 결정화학 및 생성 (II): 알루나이트-할로이사이트 (Crystal Chemistry and Paragenesis of Aluminum Sulfphates from Mudstones of the Yeonil Group (II): Alunite-halloysite)

  • 노진환;최진범
    • 한국광물학회지
    • /
    • 제13권1호
    • /
    • pp.1-14
    • /
    • 2000
  • 알루나이트는 포항지역의 제3기 연일층군의 이암 층내의 탄산염 결핵체 주변에서 할로이사이트와 함께 극미립 변질물 (1-2 $\mu\textrm{m}$)로서 산출된다. 알루나이트는 정육면체와 유사한 능면체 결정형을 이루고 침상 내지 단주상의 할로이사이트와 밀접한 공생관계를 이룬다. X-선회절 분석에 의해서 이 알루나이트는 a=6.9897(1) $\AA$, c=17.2327(4)$\AA$, V=728.75(3) $\AA$3의 격자상수값을 갖는 것으로 밝혀졌다. X-선형광된 이 알루나이트의 화학식은 (K0.94N0.06)(Al2.55Fe3+0.45)(SO4)2(OH)6 으로서, 나트로알루나이트 단성분을 6-7 mole%정도 함유하는 것으로 분석되었다. 또한 시차열분석 (TG-DTG-DTA)을 통해서 알루나이트의 승화성 성분들 (H2O와 SO3)의 존재와 함유 정도를 조사하였고, 고온X-선회절분석을 병행하여 이 광물의 OH기의 이탈 반응 (52$0^{\circ}C$)과 고온상으로의 전이 반응 ($600^{\circ}C$$700^{\circ}C$)을 감정 하였다. K/Ar 법으로 측정된 알루나이트의 생성 연대 ($0.342\pm$0.008 Ma)와 안정동위원소들의 분석 결과 ($\delta$18Oso4=-1.7, $\delta$DSMOW=-31, $\delta$34S=-10.8)는 이 알루미늄 황산염 광물이 연일충군의 융기 이후에 야기된 민물의 유입에 의한 표성기원의 변질작용의 결과로 생성되었음을 지시한다. 알루나이트+할로이사이트 공생군의 침전은 이암 내에서 조성된 강산성 (pH=2-3)의 알루미늄 황산염 용액이 탄산염 결핵체를 만나 반응하여 pH가 국지적으로 증가되어 (pH=4) 과포화되는 과정에 의해서 야기되었다. 컴퓨터를 이용한 Al3+의 포화지수에 관한 화학적 평형 모델링 실험 결과, 알루미늄 황산염 용액으로부터의 알루나이트와 할로이사이트의 침전은 pH=4 및 \ulcornerSO42-=10-4M 조건에서 K+과 Si(OH)4의 농도가 10-4M 이상 유지되어야 가능한 것으로 밝혀졌다.

  • PDF

Comparative Biodegradation of HDPE and LDPE Using an Indigenously Developed Microbial Consortium

  • Satlewal, Alok;Soni, Ravindra;Zaidi, Mgh;Shouche, Yogesh;Goel, Reeta
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권3호
    • /
    • pp.477-482
    • /
    • 2008
  • A variety of bacterial strains were isolated from waste disposal sites of Uttaranchal, India, and some from artificially developed soil beds containing maleic anhydride, glucose, and small pieces of polyethylene. Primary screening of isolates was done based on their ability to utilize high- and low-density polyethylenes (HDPE/LDPE) as a primary carbon source. Thereafter, a consortium was developed using potential strains. Furthermore, a biodegradation assay was carried out in 500-ml flasks containing minimal broth (250ml) and HDPE/LDPE at 5mg/ml concentration. After incubation for two weeks, degraded samples were recovered through filtration and subsequent evaporation. Fourier transform infrared spectroscopy (FTIR) and simultaneous thermogravimetric-differential thermogravimetry-differential thermal analysis (TG-DTG-DTA) were used to analyze these samples. Results showed that consortium-treated HDPE (considered to be more inert relative to LDPE) was degraded to a greater extent (22.41% weight loss) in comparison with LDPE (21.70% weight loss), whereas, in the case of untreated samples, weight loss was more for LDPE than HDPE (4.5% and 2.5%, respectively) at $400^{\circ}C$. Therefore, this study suggests that polyethylene could be degraded by utilizing microbial consortia in an eco-friendly manner.

Nonisothermal Decomposition Reaction Kinetics, Specific Heat Capacity, Thermodynamic Properties and Adiabatic Time-to-explosion of 4-Amino-1,2,4-triazole Copper Complex

  • Ren, Yinghui;Li, Dan;Yi, Jianhua;Zhao, Fengqi;Ma, Haixia;Xu, Kangzhen;Song, Jirong
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권7호
    • /
    • pp.1988-1992
    • /
    • 2010
  • 4-Amino-1,2,4-triazole copper complex (4-ATzCu) was synthesized, and its thermal behaviors, nonisothermal decomposition reaction kinetics were studied by DSC and TG-DTG techniques. The thermal decomposition reaction kinetic equation was obtained as: $d\alpha$ / dt =$10^{22.01}$ (1-$\alpha$)[-ln(1-$\alpha$)]$^{1/3}$ exp($-2.75\times10^4$ /T). The standard mole specific heat capacity of the complex was determined and the standard molar heat capacity is 305.66 $J{\cdot}mol^{-1}{\cdot}K^{-1}$ at 298.15 K. The entropy of activation $({\Delta}S^{\neq})$, enthalpy of activation $({\Delta}H^{\neq})$, and Gibbs free energy of activation $({\Delta}G^{\neq})$ are calculated as 171.88 $J{\cdot}mol^{-1}{\cdot}K^{-1}$ 225.81 $kJ{\cdot}mol^{-1}$ and 141.18 $kJ{\cdot}mol^{-1}$, and the adiabatic time-to-explosion of the complex was obtained as 389.20 s.

Crystal Structures and Thermal Properties of 2,6-Dinitrophenol Complexes with Lanthanide Series

  • Kim, Eun-Ju;Kim, Chong-Hyeak;Kim, Jae-Kyung;Yun, Sock-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권6호
    • /
    • pp.1157-1161
    • /
    • 2008
  • 2,6-Dinitrophenol (2,6-DNP) complexes with lanthanide series including yttrium (except Pm, Tm, and Lu) have been synthesized and their crystal structures have been analyzed by X-ray diffraction methods. Singlecrystal X-ray structure determinations have been performed at 296 K on the Ce$\rightarrow$Yb species and shown them to be isomorphous, triclinic, P1, a = 8.6558(2)$\rightarrow$8.5605(3) $\AA$, b = 11.8813(3)$\rightarrow$11.6611(4) $\AA$, c = 13.9650(3) $\rightarrow$13.8341(5) $\AA$, $\alpha$ = 73.785(1)$\rightarrow$73.531(2)o, $\beta$ = 74.730(1)→74.903(2)${^{\circ}}$, $\gamma$ = 69.124(1)→ 69.670 $(2){^{\circ}}$, V = 1266.86(5)→1221.53(7) $$\AA^{3}$$, Z = 2. In Ln(III) complexes, three 2,6-DNP ligands coordinate directly to the metal ion in the bidentate fashion. The nine coordinated Ln(III) ion forms slightly distorted tri-capped trigonal prism. There are no water molecules in the crystal lattice. The dependences of metal to ligand bond lengths are discussed on the atomic number of lanthanide elements. The thermal properties of lanthanide complexes of 2,6- DNP have also studied by TG-DTG and DSC thermal analysis methods.

Preparation, Structural Investigation and Thermal Decomposition Behavior of Two High-Nitrogen Energetic Materials: ZTO·2H2O and ZTO(phen)·H2O

  • Ma, Cong;Huang, Jie;Zhong, Yi Tang;Xu, Kang Zhen;Song, Ji Rong;Zhang, Zhao
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권7호
    • /
    • pp.2086-2092
    • /
    • 2013
  • Two new high-nitrogen energetic compounds $ZTO{\cdot}2H_2O$ and $ZTO(phen){\cdot}H_2O$ have been synthesized (where ZTO = 4,4-azo-1,2,4-triazol-5-one and phen = 1,10-phenanthroline). The crystal structure, elemental analysis and IR spectroscopy are presented. Compound 1 $ZTO{\cdot}2H_2O$ crystallizes in the orthorhombic crystal system with space group Pnna and compound 2 $ZTO(phen){\cdot}H_2O$ in the triclinic crystal system with space group P-1. In $ZTO(phen){\cdot}H_2O$, there is intermolecular hydrogen bonds between the -NH group of ZTO molecule (as donor) and N atom of phen molecule (as acceptor). Thermal decomposition process is studied by applying the differential scanning calorimetry (DSC) and thermo thermogravimetric differential analysis (TG-DTG). The DSC curve shows that there is one exothermic peak in $ZTO{\cdot}2H_2O$ and $ZTO(phen){\cdot}H_2O$, respectively. The critical temperature of thermal explosion ($T_b$) for $ZTO{\cdot}2H_2O$ and $ZTO(phen){\cdot}H_2O$ is $282.21^{\circ}C$ and $195.94^{\circ}C$, respectively.

Structural Characterization and Thermal Behavior of a Novel Energetic Material: 1-Amino-1-(2,4-dinitrophenylhydrazinyl)-2,2-dinitroethylene

  • Ren, Xiaolei;Zuo, Xiangang;Xu, Kangzhen;Ren, Yinghui;Huang, Jie;Song, Jirong;Wang, Bozhou;Zhao, Fengqi
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권7호
    • /
    • pp.2267-2273
    • /
    • 2011
  • A novel energetic material, 1-amino-1-(2,4-dinitrophenylhydrazinyl)-2,2-dinitroethylene (APHDNE), was synthesized by the reaction of 1,1-diamino-2,2-dinitroethylene (FOX-7) and 2,4-dinitrophenylhydrazine in N-methyl pyrrolidone (NMP) at 110 $^{\circ}C$. The theoretical investigation on APHDNE was curried out by B3LYP/6-311+$G^*$ method. The IR frequencies analysis and NMR chemical shifts were performed and compared with the experimental results. The thermal behavior of APHDNE was studied by DSC and TG/DTG methods, and can be divided into two crystal phase transition processes and three exothermic decomposition processes. The enthalpy, apparent activation energy and pre-exponential factor of the first exothermic decomposition reaction were obtained as -525.3 kJ $mol^{-1}$, 276.85 kJ $mol^{-1}$ and $10^{26.22}s^{-1}$, respectively. The critical temperature of thermal explosion of APHDNE is 237.7 $^{\circ}C$. The specific heat capacity of APHDNE was determined with micro-DSC method and theoretical calculation method, and the molar heat capacity is 363.67 J $mol^{-1}K^{-1}$ at 298.15 K. The adiabatic time-to-explosion of APHDNE was also calculated to be a certain value between 253.2-309.4 s. APHDNE has higher thermal stability than FOX-7.

Impact of Air Convection on H3PO4-Activated Biomass for Sequestration of Cu (II) and Cd (II) Ions

  • Girgis, Badie S.;Elkady, Ahmed A.;Attia, Amina A.;Fathy, Nady A.;Abdel Wahhab, M. A.
    • Carbon letters
    • /
    • 제10권2호
    • /
    • pp.114-122
    • /
    • 2009
  • Crushed, depitted peach stones were impregnated activated with 50% $H_3PO_4$ followed by pyrolysis at $500^{\circ}C$. Two activated carbons were produced, one under its own evolved gases during pyrolysis, and the second conducted with air flow throughout the carbonization stage. Physicochemical properties were investigated by several procedures; carbon yield, ash content, elemental chemical analysis, TG/DTG and FTIR spectra. Porosity characteristics were determined by the conventional $N_2$ adsorption at 77 K, and data analyzed to get the major texture parameters of surface area and pore volume. Highly developed activated carbons were obtained, essentially microporous, with slight effect of air on the porous structure. Oxygen was observed to be markedly incorporated in the carbon matrix during the air treatment process. Cation exchange capacity towards Cu (II) and Cd (II) was tested in batch single ion experimental mode, which proved to be slow and a function of carbon dose, time and initial ion concentration. Copper was up taken more favorably than cadmium, under same conditions, and adsorption of both cations was remarkably enhanced as a consequence of the air treatment procedure. Sequestration of the metal ions was explained on basis of the combined effect of the oxygen functional groups and the phosphorous-containing compounds; both contributing to the total surface acidity character.