• Title/Summary/Keyword: TENSILE PROPERTY

Search Result 1,283, Processing Time 0.034 seconds

Surface Modification Effect and Mechanical Property of para-aramid Fiber by Low-temperature Plasma Treatment (저온 플라즈마 처리를 이용한 파라 아라미드 섬유의 표면 개질 효과 및 역학적 특성(2))

  • Park, Sung-Min;Son, Hyun-Sik;Sim, Ji-Hyun;Kim, Joo-Young;Kim, Taekyeong;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.27 no.1
    • /
    • pp.18-26
    • /
    • 2015
  • para-aramid fibers were treated by atmosphere air plasma to improve the interfacial adhesion. The wettability of plasma-treated aramid fiber was observed by means of dynamic contact angle surface free energy measurement. Surface roughness were investigated with the help of scanning electron microscopy and atomic force microscopy. The tensile test of aramid fiber roving was carried out to determine the effect of plasma surface treatments on the mechanical properties of the fibers. A pull-out force test was carried out to observe the interfacial adhesion effect with matrix material. It was found that surface modification and a chemical component ratio of the aramid fibers improved wettability and adhesion characterization. After oxygen plasma, it was indicated that modified the surface roughness of aramid fiber increased mechanical interlocking between the fiber surface and vinylester resin. Consequently the oxygen plasma treatment is able to improve fiber-matrix adhesion through excited functional group and etching effect on fiber surface.

Influence of Hot Isostatic Press on Quasi-static and Dynamic Mechanical Properties of SLM-printed Ti-6Al-4V Alloy (SLM 방식으로 적층 제조된 Ti-6Al-4V 합금의 HIP 처리에 따른 준정적 및 동적 기계적 특성 변화)

  • Jang, Ji-Hoon;Choi, Young-Sin;Kim, Hyeoung-Kyun;Lee, Dong-Geun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.3
    • /
    • pp.99-106
    • /
    • 2020
  • Selective laser melting (SLM) is an additive manufacturing process by melting metallic powders and stacking into layers, and can product complex shapes or near-net-shape (NNS) that are difficult to product by conventional processes. Also, SLM process is able to raise the efficiency of production by creating a streamlined manufacturing process. For manufacturing in SLM process using Ti-6Al-4V powder, analysis of microstructural evolution and evaluation of mechanical properties are essential because of rapid melting and solidification process of powders according to high laser power and rapid scan speed. In addition, it requires a post-processing because the soundness and mechanical properties are degraded by defects such as pore, un-melted powder, lack-of-fusion, etc. In this study, hot isostatic press (HIP) was conducted as a post-processing on SLM-printed Ti-6Al-4V alloy. Microstructure of post-processed Ti-6Al-4V alloy was compared to as-built Ti-6Al-4V, and the evolution of quasi-static (Vickers hardness, room temperature tensile characteristic) and dynamic (high-cycle fatigue characteristic) mechanical properties were analyzed.

The Changes of Vulcanization and Physico-Mechanical Properties of NR/BR Blend with the Content of Sulfur and Accelerator (황 및 가황 촉진제의 함량에 따른 NR/BR 블렌드의 가황과 물리적·기계적 특성의 변화)

  • Kim, Wan-Young;Lee, Dai-Soo;Kim, Youn-Sop;Kim, Hyung-Soon;Nah, Chang-Woon
    • Applied Chemistry for Engineering
    • /
    • v.2 no.4
    • /
    • pp.356-362
    • /
    • 1991
  • The physico-mechanical properties of NR/BR blend were measured, and the results were interpreted in terms of the crosslink density with cure system. The cure rate, maximum torque and crosslink density increase with the content and ratio of curative for cure system. Hardness, 300 % tensile modulus, rebound and wear resistance increase with crosslink density of the vulcanizate but heat build-up and tan $\delta$ at $60^{\circ}C$ decrease. It is expected that semi-EV(efficient vulcanization) cure system is appropriate for application in tire tread of truck/bus in which load bearing property is impotant.

  • PDF

Effect of Post Heat Treatment on Bonding Interfaces in Ti/STS409L/Ti Cold Rolled Clad Materials (Ti/STS409L/Ti 냉연 클래드재의 접합계면특성에 미치는 후열처리의 영향)

  • Bae, D.S.;Kim, W.J.;Eom, S.C.;Park, J.H.;Lee, S.P.;Kim, M.J.;Kang, C.Y.
    • Transactions of Materials Processing
    • /
    • v.20 no.2
    • /
    • pp.140-145
    • /
    • 2011
  • The aim of the present study is to derive optimized post heat treatment temperatures to get a proper formability for Ti/STS409L/Ti clad materials. These clad materials were fabricated by cold rolling followed by a post heat treatment process for 10 minutes at temperatures ranging from $500^{\circ}C$ to $850^{\circ}C$. The microstructure of the interface was observed using a Scanning Electron Microscope(SEM) and an Energy Dispersive X-ray Analyser(EDX) in order to investigate the effects of post heat treatment on the bonding properties of the Ti/STS409L/Ti clad materials. Diffusion bonding was observed at the interfaces with a diffusion layer thickness increasing with the post heat treatment temperature. The diffusion layer was composed of a type of(${\varepsilon}+{\zeta}$) intermetallic compound containing additional elements, namely, Fe, Ti and Ni. The micro Knoop hardness of the Ti/STS409L interfaces was found to increase with heat treatment up to $800^{\circ}C$ and then decrease for temperatures rising up to $850^{\circ}C$. The tensile strength was shown to decrease for heat treatment temperature increasing to $750^{\circ}C$ and then increase rapidly for temperature rising up to $850^{\circ}C$. A post heat treatment temperature range of $700{\sim}750^{\circ}C$ was found to optimize the formability of Ti/STS409L/Ti clad materials.

Analysis of Mold Filling Associated with Unsteady Flow in Injection Molding Process (사출성형 공정에서 비정상 흐름에 의한 Mold Filling 현상)

  • 류민영;신희철;배유리
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.545-555
    • /
    • 2000
  • Surface defects in injection molded parts due to the unsteady flow are related to the dimension of gate, operational conditions and rheological properties of polymer. In this study we have examined surface defects in injection molding for PC, PBT and PC/ABS alloy with several injection speeds. We have used various cavity shapes that are tensile, flexural and impact test specimens with various gate and cavity thicknesses. Through this study we have observed that the formation of surface defect associated with jetting during filling stage in injection molding is strongly related to not on]v die swell but retardation of die swell. Large die swell eliminates jetting however the large retardation of die swell stimulates jetting. Reducing the thickness ratio of cavity to gate can reduce or eliminate jetting and surface defects. It also enlarges process window that can produce steady flow of polymer melt in injection molding.

  • PDF

Plasma-Surface-Treatment of Nylon 6 Fiber for the Improvement of Water-Repellency by Low Pressure RF Plasma Discharge Processing (나일론 6 섬유의 발수성 향상을 위한 RF 플라스마 표면처리)

  • Ji, Young-Yeon;Jeong, Tak;Kim, Sang-Sik
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.31-36
    • /
    • 2007
  • It has been reported that the surface properties of the plasma treated material were changed while maintaining its bulk properties. In this study, surface modification of nylon fiber by plasma treatment was tried to attain high water-repellency Nylon fiber was treated with RF plasma under a vacuum system using various parameters such as gas specious, processing time and processing power. Morphological changes by low pressure plasma treatment were observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Moreover, the mechanical and inherent properties were analyzed by tensile strength, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The high water-repellency property of nylon fiber was evaluated by a water-drop standard test under various conditions in terms of aging effect. The results showed that the water-repellency of plasma-surface-treated nylon fiber was greatly improved compared to untreated nylon fiber.

Effect of Consolidation using Artificial Porous Material for Stone Cultural Property (인공 다공질체를 이용한 석조문화재 강화제의 처리효과)

  • Lee, Jae-Man;Lee, Myeong-Seong;Kim, Jae-Hwan;Lee, Mi-Hye
    • Journal of Conservation Science
    • /
    • v.26 no.3
    • /
    • pp.325-334
    • /
    • 2010
  • In order to clarify the effect of consolidant, the artificial porous material with low intensity was manufactured using granite powder and Portland cement. We have prepared four kinds of alkoxysilane system consolidants, a acrylic resin and a epoxy resin and investigated about characteristics before and after consolidation. As a result of the research, Silres BS OH 100 was effective for density and surface hardness. SS-101 with hydrophobicity and Site SX-RO with hydrophilicity had the good durability over salts weathering. On the other hand, Syton HT-50 and Paraloid B72 were easily destructed by salt weathering because they were concentrated on surface area by the low penetration depth. Araldite 2020 was the most effective consolidant for improvement of physical properties.

Studies on Fabrics woven with Silk/Polyester Compound Yarn (고치와 폴리에스텔 복합사 직물의 시직)

  • 김영대;김남정
    • Journal of Sericultural and Entomological Science
    • /
    • v.36 no.2
    • /
    • pp.147-151
    • /
    • 1994
  • This study was carried out investigate the characteristics of Habutae and Chiffon woven with silk and polyester(S/P) compound yarn. The S/P compound yarn could be produced by the automatic reeling machine with attachment of air jetting device, polyester yarn guider and tension control apparatus. The surface structure, tensile property and dyeing fastness of S/P compound fabric were examined for the fabric properties. Electron microscopy revealed that most part of S/P compound yarn was well interlaced and some silk part of compound yarn were hidden by polyester on an examination of surface of chiffon fabric. By the one bath and two step dyeing of disperse and acidic dyes, the colour fastness of S/P compound fabrics were 4 grade above. The tenacity and initial modulus of the finished S/P compound fabric were lower than those of grey and degummed fabrics, but reversed in elongation.

  • PDF

A convergence study on the properties of hair coated with Ginkgo biloba extract (은행잎 추출물 도포 모발의 물성(物性)에 관한 융합적 연구)

  • Park, Jang-Soon
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.8
    • /
    • pp.223-228
    • /
    • 2020
  • The need to steadily manage healthy hair for a beautiful hairstyle is emerging, and it is time to develop hair cosmetics using natural antioxidants that are harmless to the human body according to the needs of the times. Therefore Max. Load, Max. Stress, Max. Elongation, and breakage on the hair coated with the extract of Ginkgo biloba L. According to the Break Load, Break Stress, Break Elongation, Max. Various convergence property experiments such as modulus and Tangential modulus values were conducted. As a result of research, the hairs coated with Ginkgo biloba extract had an overall increase in intrinsic properties including tensile strength compared to the control group. Through this study, we intend to study the potential of Ginkgo biloba L. as a useful material for hair cosmetics such as permanent wave preparations as well as health supplements and medicines that have been released, and we expect that it will be provided as useful research data for the subsequent development of various hair cosmetics.

Development of Large Superalloy Exhaust Valve Spindle by Dissimilar Inertia Welding Process (이종재료 마찰용접에 의한 초내열합금 대형 배기밸브 스핀들 개발)

  • Park Hee-Cheon;Jeong Ho-Seung;Cho Jong-Rac;Lee Nak-Kyu;Oh Jung-Seok;Han Mvoung-Seoup
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.8
    • /
    • pp.891-898
    • /
    • 2005
  • Inertia welding is a solid-state welding process in which butt welds in materials are made in bar and in ring form at the joint race, and energy required lot welding is obtained from a rotating flywheel. The stored energy is converted to frictional heat at the interface under axial load. The quality of the welded joint depends on many parameters, including axial force, initial revolution speed and energy amount of upset. working time, and residual stresses in the joint. Inertia welding was conducted to make the large exhaust valve spindle for low speed marine diesel engine. superalloy Nimonic 80A for valve head of 540mm and high alloy SNCrW for valve stem of 115mm. Due to different material characteristics such as, thermal conductivity and flow stress. on the two sides of the weld interface, modeling is crucial in determining the optimal weld geometry and Parameters. FE simulation was performed by the commercial code DEFORM-2D. A good agreement between the Predicted and actual welded shape is observed. It is expected that modeling will significantly reduce the number of experimental trials needed to determine the weld parameters. especially for welds for which are very expensive materials or large shaft. Many kinds of tests, including macro and microstructure observation, chemical composition tensile , hardness and fatigue test , are conducted to evaluate the qualify of welded joints. Based on the results of the tests it can be concluded that the inertia welding joints of the superalloy exhaust valve spindle are better properties than the material specification of SNCrW.