• Title/Summary/Keyword: TEMPERATURE CHANGE

Search Result 9,999, Processing Time 0.041 seconds

Potential Impacts of Climate Change on Water Temperature of the Streams in Han-River Basin (기후변화 시나리오별 한강유역의 수계별 수온상승 가능성)

  • Kim, Minhee;Lee, Junghee;Sung, Kyounghee;Lim, Cheolsoo;Hwang, Wonjae;Hyun, Seunghun
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.1
    • /
    • pp.19-30
    • /
    • 2022
  • Climate change has increased the average air temperature. Rising air temperature are absorbed by water bodies, leading to increasing water temperature. Increased water temperature will cause eutrophication and excess algal growth, which will reduce water quality. In this study, long-term trends of air and water temperatures in the Han-river basin over the period of 1997-2020 were discussed to assess the impacts of climate change. Future (~2100s) levels of air temperature were predicted based on the climate change scenarios (Representative concentration pathway (RCP) 2.6, 4.5, 6.0, and 8.5). The results showed that air and water temperatures rose at an average rate of 0.027℃ year-1 and 0.038℃ year-1 respectively, over the past 24 years (1997 to 2020). Future air temperatures under RCP 2.6, 4.5, 6.0, and 8.5 increased up to 0.32℃ 1.18℃, 2.14℃, and 3.51℃, respectively. An increasing water temperature could dissolve more minerals from the surrounding rock and will therefore have a higher electrical conductivity. It is the opposite when considering a gas, such as oxygen, dissolved in the water. Water temperature also governs the kinds of organisms that can live in rivers and lakes. Fish, insects, zooplankton, phytoplankton, and other aquatic species all have a preferred temperature range. As temperatures get too far above or below this preferred range, the number of individuals of the species decreases until finally there are none. Therefore, changes of water temperature that are induced by climate change have important implications on water supplies, water quality, and aquatic ecosystems of a watershed.

Analysis for Air Temperature Trend and Elasticity of Air-water Temperature according to Climate Changes in Nakdong River Basin (기후변화에 따른 낙동강 유역의 기온 경향성 및 수온과의 탄성도 분석)

  • Shon, Tae Seok;Lim, Yong Gyun;Baek, Meung Ki;Shin, Hyun Suk
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.822-833
    • /
    • 2010
  • Temperature increase due to climate changes causes change of water temperature in rivers which results in change of water quality etc. and the change of river ecosystem has a great impact on human life. Analyzing the impact of current climate changes on air and water temperature is an important thing in adapting to the climate changes. This study examined the effect of climate changes through analyzing air temperature trend for Nakdong river basin and analyzed the elasticity of air-water temperature to understand the effect of climate changes on water temperature. For analysis air temperature trend, collecting air temperature data from the National Weather Service on main points in Nakdong river basin, and resampling them at the units of year, season and month, used as data for air temperature trend analysis. Analyzing for elasticity of air-water temperature, the data were collected by the Water Environment Information system for water temperature, while air temperature data were collected at the National Weather Service point nearest in the water temperature point. And using the results of trend analysis and elasticity analysis, the effect of climate changes on water temperature was examined estimating future water temperature in 20 years and 50 years after. It is judged that analysis on mutual impact between factors such as heat budget, precipitation and evapotranspiration on river water temperature affected by climate changes and river water temperature is necessary.

Characteristics of Changes in Air and Road Temperatures Induced by Environmental Conditions in the Urban Region of Seoul Through an Intensive Observing Period (IOP) of Heatwaves in the Summer of 2023 (2023년 여름철 폭염 집중관측을 통한 서울 도심환경 조건에 따른 기온 및 노면 온도의 변화 특성)

  • Sung-Joon Na;Sang-Dae Han;Je-Won Kim;Moon-Su Park;Baek-Jo Kim
    • Journal of Environmental Science International
    • /
    • v.33 no.1
    • /
    • pp.75-85
    • /
    • 2024
  • An intensive observing period (IOP) of heatwaves in the urban region of Seoul in the summer of 2023 was carried out to understand the changes in air temperature and road temperature induced by environmental conditions. The temperature observed at eight points with different urban environmental conditions was compared with the temperature by the KMA/AWS to analyze the characteristics of change in air temperature by height and the change in road temperature according to environmental conditions and road sprinkler. The comparison of the average temperature observed in different urban environmental conditions with the temperature observed at KMA/AWS showed that the air temperature in asphalt and open space sites was 0.7 to 2.3℃ higher and that the one in bus stops was 0.9 to 2.3℃ higher. In terms of temperature deviations depending on residential type, the temperature in highly populated areas was about 0.1 to 0.8℃ higher than that of apartment complexes. In addition, regardless of the size of a park, the temperature in the park was lower than the temperature in dense housing areas and apartment complexes. In asphalt and residential areas, the road temperature was higher than the temperature at a height of 150 cm, Conversely, road temperature was lower than air temperature in a shaded shelter and large park. In addition, after spraying a surface road, the road temperature immediately dropped by about 3 to 4℃; however, after about 20 minutes, it rose again to the previous road temperature. This change in road temperature appeared only for the temperature of 30 cm height.

Laser Based Temperature Measurement of Rotating Disk Using Thermocolor (서모컬러를 이용한 회전 디스크의 레이저 온도 측정)

  • Na, Wonhwi;Yoo, JaeChern
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.49-53
    • /
    • 2013
  • In this paper, we proposed a laser-based non-contact temperature measuring method for high speed rotating polycarbonate (PC) disk using transparency change of thermocolor. The thermocolor has abilities to change color and transparency due to a change in temperature. The thermocolor is applied on one side of polyvinylidene fluoride (PVDF) membrane. The thermocolor applied membrane is attached to inside of reaction chamber in disk. An optical system consisted of a laser beam radiator and a laser photometer is installed. Laser is irradiated at the bottom side of disk and the transmitted laser beam is detected by the laser photometer at the opposite side of disk. During the disk is rotating, laser is irradiated and detected simultaneously. The laser photometer senses the transmitted laser power and generates voltage as output. The temperature of disk can be detected during the disk is rotating up to 3000 RPM.

A Study on the Heat Transfer Characteristics and Performance of the High Temperature Range Heater Plate Using Liquid-Vapor Phase Change Heat Transfer (기-액 상변화 열전달식 고온 히터 플레이트의 작동 특성과 성능에 관한 연구)

  • Kang, Hwan-Kook;Yim, Kwang-Bin
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.6
    • /
    • pp.283-289
    • /
    • 2013
  • The experimental study for the temperature uniformity on the wafer using liquid-vapor phase heat transfer mechanism is performed. For the experiment, the heater plate which is consist of stainless steel container, working fluid and electrical heater is designed, manufactured and tested at the range of 600 to $850^{\circ}C$. The results showed that the phase change type heater plate was much more uniform and stable temperature on the heater plate surface and wafer than the uniform heat flux type heater plate at the atmospheric condition. Also, the results of 300 mm outer diameter of heater plate showed that the same temperature uniformity compared with 230 mm.

A Study on Cooling Characteristics of Low Temperature Thermal Storage Material with Additives (첨가제를 첨가한 저온축열물질의 냉각특성에 대한 연구)

  • Chung, Nak-Kyu;Kim, Jin-Heung;Chung, Jong-Hun;Kim, Chang-Oh;Kang, Seung-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1746-1750
    • /
    • 2004
  • The objective of this study is to investigate the effect of supercooling repression on the clathrate compound by adding additives. For this purpose, phase change temperature and supercooling were measured when additives added to TMA30wt% clathrate for heat source temperature of $-6^{\circ}C$. The experimental results show that the phase change temperature with the chloroform of 0.1wt% is higher by $0.3^{\circ}C$ than TMA30wt% and the supercooling with the surfactant 0.1wt% is reduced by $9.2^{\circ}C$.

  • PDF

Predicting the high temperature effect on mortar compressive strength by neural network

  • Yuzer, N.;Akbas, B.;Kizilkanat, A.B.
    • Computers and Concrete
    • /
    • v.8 no.5
    • /
    • pp.491-510
    • /
    • 2011
  • Before deciding if structures exposed to high temperature are to be repaired or demolished, their final state should be carefully examined. Destructive and non-destructive testing methods are generally applied for this purpose. Compressive strength and color change in mortars are observed as a result of the effects of high temperature. In this study, ordinary and pozzolan-added mortar samples were produced using different aggregates, and exposed to 100, 200, 300, 600, 900 and $1200^{\circ}C$. The samples were divided into two groups and cooled to room temperature in water and air separately. Compression tests were carried out on these samples, and the color change was evaluated by the Munsell Color System. The relationships between the change in compressive strength and color of mortars were determined by using a multi-layered feed-forward Neural Network model trained with the back-propagation algorithm. The results showed that providing accurate estimates of compressive strength by using the color components and ultrasonic pulse velocity design parameters were possible using the approach adopted in this study.

A Study of Physiology Signal Change by Air Conditioner Temperature Change (에어컨 온도변동에 따른 생리신호 변화에 관한 연구)

  • Kum, Jong-Soo;Kim, Dong-Gyu;Kim, Hyung-Chul
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.19 no.3
    • /
    • pp.502-509
    • /
    • 2007
  • This study evaluates thermal comfort by air conditioner temperature raising at the point of time that human body begins to adapt. Thermal comfort according to change of time enters by uncomfortable area gradually at general cold room temperature that magnetic pole is in human body. However, can know that keep continuous thermal comfort in case raise temperature in human body adaptation visual point. Experiments were performed in environmental chamber. Subjects were selected 4 men and 4 women whose life cycle were proved that are similar. The subjects stay in the pretesting room during the 30 minutes and enter the testing room under each experiment conditions. During the experiment, brain wave, electrocardiogram, blood pressure and thermal comfort and sensation responses were measured. In this study, physiological and psychological responses correspond under temperature raising at human body adaptation.

A study on the Fabrication and Characteristics of SAW Temperature Sensor using piezoelectric material (압전재료를 이용한 SAW 온도센서의 제작 및 특성에 대한 연구)

  • 박재홍;김재환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.563-567
    • /
    • 2004
  • In this paper, a remote temperature sensor based on surface acoustic wave is introduced and the issues on design, manufacturing, and test of the sensor are addressed. SAW sensors having single and double electrode are prepared on the 128$^{\circ}$ YX-LiNbO$_3$ Substrate. The frequency responses of SAW sensors on the temperature change are compared. To measure the change of center frequency, two center frequencies on the 3dB and 20dB are measured and compared. Since the center frequency on the temperature change from -30$^{\circ}C$ to 80$^{\circ}C$ is linearly changed, the SAW sensor is applicable to the temperature sensor.

  • PDF

A study on the Fabrication and characterization of temperature Sensor using surface acoustic wave (표면 탄성파를 이용한 온도센서의 제작 및 특성에 대한 연구)

  • Park Jae-Hong;Kim Jae-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.139-145
    • /
    • 2006
  • This paper presents the design and manufacturing of a sensor using SAW and delay line in order to measure temperature. SAW sensors having single and double electrodes are manufactured on the $128^{\circ}YX-LiNbO_3$ substrate, and its process is addressed. Before manufacturing, the device is simulated using a commercial finite element program. The frequency responses of the saw sensor on the temperature change is measured. Since the center frequency on the temperature change from $-30^{\circ}C$ to $80^{\circ}C$ is linearly changed, the saw sensor is applicable to measure the temperature change or strain variation.