• Title/Summary/Keyword: TEM Journal

Search Result 3,011, Processing Time 0.026 seconds

The Effect of Mo and Cr addition on the Deep Drawability of Dual Phase Steel Sheets (이상조직강판의 성형특성에 미치는 Mo와 Cr첨가의 영향)

  • Han, Seong Ho;Ahn, Yeon Sang;Chin, Kwang Geun;Kim, In Bae
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.11
    • /
    • pp.713-724
    • /
    • 2008
  • The need to lower the weights of automotive vehicle and to improve the safety of cars has resulted in the development of high strength steels such as TRIP(Transformation Induced Plasticity) and DP (Dual Phase) steel. It is well known that the higher strength of steel shows the poorer press formability. Among the high strength steels, DP steel shows several good characteristics such as low yield ratio, high initial n value, high elongation, high bake hardenability and anti-aging property. However, there's a certain limit in application of DP steels to the automotive panel parts because their poor deep drawbility caused by martensite. In this study, the effect of alloying elements on the deep drawability and recrystallization texture in TS 440MPa grade DP steel with 0.015~0.02% carbon has been investigated on the base of SEM, TEM, XRD and EBSD analysis.

Synthesis and Characterization of Anatase TiO2 Powder using a Homogeneous Precipitation Method (균일침전법을 이용한 아나타제형 TiO2 분말의 제조 및 특성 평가)

  • Choi, Soon Ok;Cho, Jee Hee;Lim, Sung Hwan;Chung, Eun Young
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.5
    • /
    • pp.367-373
    • /
    • 2011
  • This paper studies the experimental method that uses the homogeneous precipitation method to prepare mica flakes coated with anatase-type titania pearlescent pigment with urea as precipitant. The optimum technology parameters, the chemical composition, the microstructure, and the color property of resulting pigments are discussed. The coating principle of mica coated titania with various coating thickness is analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy(TEM) and tested by spectrophotometer analysis. The colored nanocrystalline pigments with different morphology and coating thickness 45-170 nm were prepared by homogeneous precipitation treatment of $TiOSO_4$(titanum oxysulfate) aqueous solutions. Characterizations on the pigments show that the pearlescent effects of the pigments depend mainly on mica size, thickness of the metal oxide deposit, its chemical composition, and crystal structure.

Endurance Life and Deformation Behavior under Thermo-mechanical Fatigue of Nb-added Heat Resistant Austenitic Stainless Steel (Nb 첨가 오스테나이트계 내열 스테인리스강의 열기계적 피로 수명 및 변형 거동)

  • Oh, Yong Jun;Park, Joong-Cheul;Yang, Won Jon
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.7
    • /
    • pp.541-548
    • /
    • 2011
  • Thermomechanical fatigue (TMF) behavior of heat resistant austenitic stainless steel was evaluated in the temperature range from 100$^{\circ}C$ to peak temperatures of 600 to 800$^{\circ}C$; The fatigue lives under TMF conditions were plotted against the plastic strain range and the dissipated energy per cycle. In the expression of the inelastic strain range versus fatigue life, the TMF data obtained at different temperature ranges were located close to a single line with a small deviation; however, when the dissipated energy per cycle, calculated from the area of the stress-strain hysteresis loops at the half of the fatigue life, was plotted against the fatigue life, the data showed greater scattering than the TMF life against the inelastic strain range. A noticeable stress relaxation in the stress-strain hysteresis curve took place at the peak temperatures higher than 700$^{\circ}C$, but all specimens in this study exhibited cyclic hardening behavior with TMF cycles. Recrystallization occurred during the TMF cycle concurrent with the formation of fine subgrains in the recrystallized region, which is considered to cause the cyclic hardening of the steel.

Precise Analysis of the Surface Oxidation Layer on Cu Powders Using FE-TEM Techniques (전계방출 투과전자현미경 분석기술을 이용한 Cu 입자 표면산화층의 정밀평가)

  • Lee, Tae Hun;Yoo, Jung Ho;Hyun, Moon Seop;Yang, Jun-Mo;Seong, Mi-Ryn;Kwon, Jinhyeong;Lee, Caroline Sunyong;Kim, Jeong-Sun;Baik, Kyeong Ho
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.1
    • /
    • pp.57-61
    • /
    • 2010
  • Nanosized surface structures of Cu powders were investigated at the atomic scale by field-emission transmission electron microscope techniques. The nanoscale surface oxide layer on the Cu powder was analyzed to be the $CU_2O$ phase by electron diffraction pattern and electron energy-loss spectroscopy. In addition, it was found from high-resolution transmission electron microscopy study that there are formed no surface oxide layers on the surface of alkanethiol coated Cu powders.

Effect of Fine Copper Sulfides on the High Cycle Fatigue Properties of Bake Hardening Steels for Automotive (자동차용 소부경화형(BH) 강의 고주기 피로 특성에 미치는 미세 황화물의 영향)

  • Kang, Seonggeu;Kim, Jinyong;Choi, Ildong;Lee, Sungbok;Hong, Moonhi
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.3
    • /
    • pp.203-210
    • /
    • 2011
  • Bake hardening steels have to resist strain aging to prevent the yield strength increment and stretcher strain during press process and to enhance the bake hardenability during baking process after painting. The bake hardening steels need to control the solute carbon and the solute nitrogen to improve the bake hardenability. Ti and/or Nb alloying for nitride and carbide precipitation and low carbon content below 0.003% are used to solve strain aging and formability problem for automotive materials. However, in the present study, the effect of micro-precipitation of copper sulfide on the bake hardenability and fatigue properties of extremely low carbon steel has been investigated. The bake hardenability of Cu-alloyed bake hardening (Cu-BH) steel was slightly higher (5 MPa) than that of Nb-alloyed bake hardening (Nb-BH) steel, but the fatigue limit of Cu-BH steel was far higher (45 MPa) than that of Nb-BH steel. All samples showed the ductile fracture behavior and some samples revealed distinct fatigue stages, such as crack initiation, stable crack growth and unstable crack growth.

Effects of the Ordering Reaction on High Temperature Mechanical Behavior in Alloy 600 (Alloy 600에서 고온 기계적 거동에 미치는 규칙 반응의 영향)

  • Kim, Sung Soo;Kim, Dae Whan;Kim, Young Suk
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.10
    • /
    • pp.703-710
    • /
    • 2012
  • The effects of the ordering reaction on high temperature mechanical behavior is investigated by tensile tests at $2{\times}10^{-2}/s-3.3{\times}10^{-5}/s$ up to $745^{\circ}C$. The tensile deformed region is examined by differential scanning calorimeter (DSC), TEM, and high resolution neutron diffraction (HRPD). The results showed that a plateau of tensile strength appeared at $150-500^{\circ}C$ whereas the elongation minimum occurred at about $600^{\circ}C$. This suggests that the occurrence of a plateau does not cause the elongation minimum. The temperature of the elongation minimum decreases with the strain rate. HRPD results show a lattice contraction in the tensile deformed specimen at the temperature of the plateau occurring region. The plateau of tensile strength, the lattice contraction, and the occurrence of serration appeared in the same temperature region.

Effect of Double Aging on Microstructure and Mechanical Properties of Ag Added magnesium Alloys (Ag첨가 마그네슘 합금의 이중열처리에 따른 미세조직 및 기계적 특성변화)

  • Lee, Byeong-Deok;Baek, Ui-Hyun;Jang, Kyoung-soo;Han, Jeong-Whan;Son, Hyeon-taek
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.6
    • /
    • pp.440-447
    • /
    • 2011
  • To improving the mechanical properties of Mg alloys at high temperature, we investigated the mechanical properties at high temperature and the change of microstructure of Mg-6 wt%Zn-0.4 wt%Mn and Mg-6 wt%Zn-0.4 wt%Mn-1 wt%Ag alloys on age treatment that have a stable MgZn phase at high temperature and $AgMg_4$ improving yield stress. In order to predict thermodynamic data of Mg alloys, a phase diagram and precipitation phase were calculated using a thermodynamic program, and it was confirmed that the MgZn and $AgMg_4$ phase existed as main precipitation in this alloys. The experimental data examined using DSC and XRD were comparable with the calculated data for reliability. In order to analysis the microstructure and precipitate phase during aging treatment, it was measured by SEM/EDS and TEM. Lastly, mechanical properties of the MgZn and $AgMg_4$ phase were measured by a tensile test at high temperature.

Evaluation of the Cu Target Fabricated by the SPS Technique and its Sputtered Film (방전플라즈마 소결법에 의해 제조된 Cu 타겟과 스퍼터링 박막의 특성평가)

  • Hyun, Hye Young;Kim, Min Jung;Yoo, Jung Ho;Yang, Jun-Mo;Oh, Ik Hyun;Lee, Seung Min;Oh, Yong Jun
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.3
    • /
    • pp.250-255
    • /
    • 2011
  • The basic properties and electrical characteristics of sputtering films deposited with a commercial cast target and Spark Plasma Sintering (SPS) were compared and analyzed. From the results, the Cu film prepared heating $60^{\circ}C/min$ (SPS process) showed a similar specific resistance compared to the commercial cast Cu film. Also, auording to the results of XRD, SIMS, and TEM. There was not much difference in the crystal structure and impurities between the two films. Consequently, the SPS Cu target was found to have quite similar properties with the commercial one and it is expected to be applied in futare research to the metal wiring material for semiconductor/display devices.

The Hydrogen Reduction Behavior of Ultrasonic Ball-milled WO3-CuO Nanopowder (초음파 밀링한 WO3-CuO 나노혼합분말의 수소환원 거동)

  • Jung, Sung-Soo;Yoon, Eui-Sik;Lee, Jai-Sung
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.9
    • /
    • pp.597-603
    • /
    • 2009
  • The hydrogen reduction behavior of ultrasonic ball-milled $WO_3-CuO$ nanopowder, which is highly related with micro-pore structure, was investigated by thermogravimetry(TG) and hygrometry system. EDS and TEM results represented that the ultrasonic ball-milled $WO_3-CuO$ nanopowder consisted of the agglomerates which was confirmed as a homogeneous mixture of $WO_3$ and CuO particles. It was found that the reduction reaction of CuO was retarded by initial micro-pores which are smaller than 40 nm in the ultrasonic ball-milled $WO_3-CuO$ nanopowder. The earlier agglomeration of Cu particles at comparably low temperature decreased the volume of micro-pores in the $WO_3-CuO$ nanopowder which caused the retardation of $WO_3$ reduction reaction. These results clearly explain that the micro-pore structure significantly affected the reduction reaction of $WO_3$ and CuO in the $WO_3-CuO$ nanopowder.

Corrosion Behavior and Microstructural Evolution of Magnesium Powder with Milling Time Prepared by Mechanical Milling (기계적 밀링법으로 제조된 마그네슘 분말의 밀링시간에 따른 미세구조 변화와 부식거동)

  • Ahn, Jin Woo;Hwang, Dae Youn;Kim, Gyeung-ho;Kim, Hye-Sung
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.6
    • /
    • pp.454-461
    • /
    • 2011
  • In this study, the relationship between corrosion resistance and microstructural characteristics such as grain size reduction, preferred orientation, and homogenous distribution of elements and impurity by mechanical milling of magnesium powder was investigated. Mechanical milling of pure magnesium powder exhibited a complex path to grain refinement and growth together with preferred orientation reversal with milling time. It was also found that anisotropic formation of dislocation on the basal plane of magnesium was initially the dominant mechanism for grain size reduction. After 60 hrs of milling, grain coarsening was observed and interpreted as a result of the strain relaxation process through recrystallization. In spite of the finer grain size and strong (002) texture developed in the sample prepared by spark plasma sintering at $500^{\circ}C$ for 5 min after mechanical milling for 2hrs, the sample showed a higher corrosion rate. The results from this study will be helpful for better understanding of the controlling factor for corrosion resistance and behaviors of mechanical milled magnesium powders.