• Title/Summary/Keyword: TEM Journal

Search Result 3,011, Processing Time 0.026 seconds

Synthesis and Characterization of Rutile TiO2 Powder by the Sulfuric Acid Method (황산법을 이용한 루틸형 TiO2 분말의 제조 및 특성 평가)

  • Choi, Soon Ok;Cho, Jee Hee;Kim, Won Yong;Lim, Sung Hwan
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.7
    • /
    • pp.523-530
    • /
    • 2012
  • We investigated the experimental method that uses the homogeneous precipitation method to prepare mica flakes-coated rutile-type titania pearlescent pigment with urea as a precipitant. $TiO_2$ particles exhibit a high reflection of lights and optical properties with chemical stabilities, so they are appropriate for coating on luminescent pigments (mica). The coating principle of mi ca coated titania with various thicknesses was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and tested by spectrophotometer. Mica with a particle size in the range of $40-60{\mu}m$ was suspended in water, and metal sulphates and urea were added to the mixture, which was heated to boiling. The change in pH was continuously followed. The metal oxide and crystal structure were affected by the conditions of $TiOSO_4$ concentration and reaction time with a sintering temperature the range of $800-1100^{\circ}C$.

A Study on the Creep Strength of L12 and B2-ordered Intermetallics

  • Han, Seung-Oh;Han, Chang-Suk
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.12
    • /
    • pp.1070-1077
    • /
    • 2010
  • The creep rates of polycrystalline $L1_2$-ordered $Co_3Ti$ and B2-ordered NiAl-Hf intermetallics decrease appreciably with the fine precipitation of the coherent disordered fcc Co-rich phase and $Ni_2AlHf$ phase. With B2-ordered NiAl containing $L2_1-Ni_2AlHf$ precipitates, transmission electron microscope observations of the interaction between dislocations and spherical precipitates revealed that the dislocations tend to be strongly attracted to the particle interfaces during the creep deformation. On the other hand, with $L1_2$-ordered $Co_3Ti$, the significance of the threshold stress is discussed based upon the transmission electron microscope observations of the interaction between dislocations and precipitates. The superdislocations produced during deformation tend to be strongly attracted and dissociated as they meet the coherent disordered precipitates because the anti-phase boundary energy in the disordered phase was zero. An extra force required to pull the dislocations out of the disordered particles during the creep deformation establishes the threshold stress which is beneficial for improving creep strength under lower stresses.

Effect of Hot-stamping Heat Treatment on Microstructure and Hardness in TWB Laser Joints of Al-Si-coated Boron Steel and Zn-coated DP Steel (Al-Si 도금된 보론강과 Zn 도금된 DP강의 TWB 레이저 용접부 미세조직과 경도에 미치는 핫 스탬핑 열처리의 영향)

  • Jung, Byung-Hun;Kong, Jong-Pan;Kang, Chung-Yun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.3
    • /
    • pp.224-232
    • /
    • 2012
  • In this study, the effect of hot-stamping heat treatment on the microstructure and hardness of TWB(Tailor Welded Blank) laser joints in Al-Si-coated boron steel and Zn-coated DP(Dual Phase)590 steel was investigated. In the TWB joints without heat treatment, hardness profiles showed local hardness deviation near the fusion zone. However, there was no hardness deviation in the heat treated specimen and its hardness was higher than that of the one without the heat treatment, due to a fully martensite microstructure. In the TWB joints of both the boron and DP steels, the maximum hardnesses were observed at the HAZ(Heat Affected Zone) near the base metal, and the hardness decreased gradually to the base metal. In the heat treated joints, the hardnesses of the HAZ and the base metal of the boron steel side were similar to the maximum hardness of the weld, while those of the HAZ and the base metal of the DP steel side were higher than the maximum hardness.

Formation of Silver Nanoparticles on Silica by Solid-State Dewetting of Deposited Film (증착 박막의 비젖음에 의한 실리카 표면 위 은나노 입자형성)

  • Kim, Jung-Hwan;Choi, Chul-Min;Hwang, So-Ri;Kim, Jae-Ho;Oh, Yong-Jun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.9
    • /
    • pp.856-860
    • /
    • 2010
  • Silver nanoparticles were formed on silica substrates through thin film dewetting at high temperature. The microstructural and morphological evolution of the particles were characterized as a function of processing variables such as initial film thickness, annealing time, and temperature. Silver thin films were deposited onto the silica using a pulsed laser deposition system and annealed in reducing atmosphere to induce agglomeration of the films. The film thicknesses before dewetting were in the range of 5 to 25 nm. A noticeable agglomeration occurs with annealing at temperatures higher than $300^{\circ}C$, and higher annealing temperature increases particle size uniformity for the same film thickness sample. Average particle size linearly correlates to the film thickness, but it does not strongly depend on annealing temperature and time, although threshold temperature for complete dewetting increases with an increase of film thickness. Lower annealing temperature develops faceted surface morphology of the silver particles by enhancing the growth of the low index crystal plane of the particles.

Compressive Deformation Behavior of Al-10Si-5Fe-1Zr Powder Alloys Consolidated by Spark Plasma Sintering Process (Spark Plasma Sintering법에 의해 예비 성형된 Al-10Si-5Fe-1Zr 분말합금의 고온 압축변형 거동)

  • Park, Sang-Choon;Kim, Mok-Soon;Kim, Kyung-Taek;Shin, Seung-Young;Lee, Jeong-Keun;Ryu, Kwan-Ho
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.853-859
    • /
    • 2011
  • Compressive deformation behavior of Al-10Si-5Fe-1Zr (wt%) alloy preform fabricated by SPS(spark plasma sintering) of gas atomized powder was investigated in the temperature range from 380 to $480^{\circ}C$ and at strain rates from $1.0{\times}10^{-3}$ to $1.0{\times}10^{0}s^{-1}$. Stress-strain curves showed a peak stress (${\sigma}_p$) during initial stage of deformation, followed by a steady state flow at all temperatures and strain rates tested. The (${\sigma}_p$) decreased with both increase in temperature and decrease in strain rate. Nearly full densification was found to occur in the compressively deformed specimens irrespective of test condition. TEM observation revealed a restricted grain growth during steady state flow.

Regenerability of a Ni catalyst in the catalytic steam reforming of biomass pyrolysis volatiles

  • Arregi, Aitor;Lopez, Gartzen;Amutio, Maider;Barbarias, Itsaso;Santamaria, Laura;Bilbao, Javier;Olazar, Martin
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.69-78
    • /
    • 2018
  • A study has been carried out of the regenerability of a commercial Ni catalyst used in the steam reforming of the volatiles from biomass pyrolysis (gases and bio-oil), determining the evolution of the reaction indices (conversion, product yields and $H_2$ production) in successive reaction-regeneration cycles. The causes of catalyst deactivation (coke deposition and Ni sintering) have been ascertained characterizing the deactivated and regenerated catalysts by TPO, TEM, TPR and XRD. Catalyst activity is not fully recovered by coke combustion in the first cycles due to the irreversible deactivation by Ni sintering, but the catalyst reaches a pseudo-stable state beyond the fourth cycle, reproducing its behaviour in subsequent cycles.

Effect of Alloying Composition and Plastic Deformation on the Microstructure of 22Cr Micro-Duplex Stainless Steel (합금원소와 소성변형이 22Cr 마이크로 듀플렉스 스테인리스강의 미세조직에 미치는 영향)

  • Park, Jun-Young;Ahn, Yong-Sik
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.11
    • /
    • pp.793-800
    • /
    • 2012
  • The effect of cold rolling on the microstructural evolution in 22Cr-0.2N micro-duplex stainless steel was investigated. The 22Cr-xNi-yMn-0.2N duplex stainless steel plates with various Ni and Mn contents were fabricated. The steels were vacuum induction melted and hot rolled, followed by annealing treatment at the temperature range of $1000-1100^{\circ}C$, in which both the austenite and ferrite phases were stable. The volume fraction of the ferrite phase depending on the alloy compositions of Ni and Mn increased with an increase in the annealing temperature. Grain growth in the ferrite phase occurred markedly after cold rolling followed by annealing, while fine recrystallised grains were still found in the austenite phase. A large number of martensite laths was found in the microstructure of cold rolled steels, which should be formed by strain-induced martensite from the austenite phase. The intersections of stacking faults were revealed by TEM observation. The volume fraction of the martensite phase increased with an increase of the reduction ratio by cold rolling.

Effect of vanadium surface density and structure in VOx/TiO2 on selective catalytic reduction by NH3

  • Won, Jong Min;Kim, Min Su;Hong, Sung Chang
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2365-2378
    • /
    • 2018
  • We investigated the correlation between vanadium surface density and VOx structure species in the selective catalytic reduction of NOx by $NH_3$. The properties of the $VOx/TiO_2$ catalysts were investigated using physicochemical measurements, including BET, XRD, Raman spectroscopy, FE-TEM, UV-visible DRS, $NH_3-TPD$, $H_2-TPR$, $O_2-On/Off$. Catalysts were prepared using the wet impregnation method by supporting 1.0-3.0 wt% vanadium on $TiO_2$ thermally treated at various calcination temperatures. Through the above analysis, we found that VOx surface density was $3.4VOx/nm^2$, and the optimal V loading amounts were 2.0-2.5 wt% and the specific surface area was $65-80m^2/g$. In addition, it was confirmed that the optimal VOx surface density and formation of vanadium structure species correlated with the reaction activity depending on the V loading amounts and the specific surface area size.

Electrical Characteristics of and Temperature Distribution in Chalcogenide Phase Change Memory Devices Having a Self-Aligned Structure (자기정렬구조를 갖는 칼코겐화물 상변화 메모리 소자의 전기적 특성 및 온도 분포)

  • Yoon, Hye Ryeon;Park, Young Sam;Lee, Seung-Yun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.448-453
    • /
    • 2019
  • This work reports the electrical characteristics of and temperature distribution in chalcogenide phase change memory (PCM) devices that have a self-aligned structure. GST (Ge-Sb-Te) chalcogenide alloy films were formed in a self-aligned manner by interdiffusion between sputter-deposited Ge and $Sb_2Te_3$ films during thermal annealing. A transmission electron microscopy-energy dispersive X-ray spectroscopy (TEM-EDS) analysis demonstrated that the local composition of the GST alloy differed significantly and that a $Ge_2Sb_2Te_5$ intermediate layer was formed near the $Ge/Sb_2Te_3$ interface. The programming current and threshold switching voltage of the PCM device were much smaller than those of a control device; this implies that a phase transition occurred only in the $Ge_2Sb_2Te_5$ intermediate layer and not in the entire thickness of the GST alloy. It was confirmed by computer simulation, that the localized phase transition and heat loss suppression of the GST alloy promoted a temperature rise in the PCM device.

Synthesis of Shape Controlled Pd Nanoparticles and Surface-Induced Photoreduction of 4-Nitrobenzenethiol on Pd (모양이 조절된 팔라듐 나노입자의 합성과 4-나이트로벤젠 사이올의 광환원 반응)

  • Lee, Young Wook;Shin, Tae Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.458-461
    • /
    • 2019
  • The facile synthesis of shape-controlled Pd nanoparticles (PdNPs) with ascorbic acid as a reducing agent and cetyltrimethylammonium bromide (CTAB) as a capping agent is presented in this study. The synthesized PdNPs were characterized by UV-vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman Spectroscopy. The prepared PdNPs show efficient surface-enhanced Raman scattering (SERS) properties. SERS studies on the adsorption characteristics of 1,4-phenylene diisocyanide (1,4-PDI) on colloidal PdNPs have revealed that the relative peak intensity of the $(NC)_{free}$ and $(NC)_{bound}$ modes distinctly depends on the 1,4-PDI concentration as well as the shape of the PdNPs. Furthermore, we found that the PdNPs are also efficient photoelectron emitters such that the SERS spectrum of 4-nitrobenzenethiol (4-NBT) on PdNPs is readily converted to that of 4-aminobenzenethiol (4-ABT) under 632.8 nm radiation.