DOI QR코드

DOI QR Code

Regenerability of a Ni catalyst in the catalytic steam reforming of biomass pyrolysis volatiles

  • Arregi, Aitor (Department of Chemical Engineering, University of the Basque Country UPV/EHU) ;
  • Lopez, Gartzen (Department of Chemical Engineering, University of the Basque Country UPV/EHU) ;
  • Amutio, Maider (Department of Chemical Engineering, University of the Basque Country UPV/EHU) ;
  • Barbarias, Itsaso (Department of Chemical Engineering, University of the Basque Country UPV/EHU) ;
  • Santamaria, Laura (Department of Chemical Engineering, University of the Basque Country UPV/EHU) ;
  • Bilbao, Javier (Department of Chemical Engineering, University of the Basque Country UPV/EHU) ;
  • Olazar, Martin (Department of Chemical Engineering, University of the Basque Country UPV/EHU)
  • Received : 2018.05.22
  • Accepted : 2018.07.24
  • Published : 2018.12.25

Abstract

A study has been carried out of the regenerability of a commercial Ni catalyst used in the steam reforming of the volatiles from biomass pyrolysis (gases and bio-oil), determining the evolution of the reaction indices (conversion, product yields and $H_2$ production) in successive reaction-regeneration cycles. The causes of catalyst deactivation (coke deposition and Ni sintering) have been ascertained characterizing the deactivated and regenerated catalysts by TPO, TEM, TPR and XRD. Catalyst activity is not fully recovered by coke combustion in the first cycles due to the irreversible deactivation by Ni sintering, but the catalyst reaches a pseudo-stable state beyond the fourth cycle, reproducing its behaviour in subsequent cycles.

Keywords

Acknowledgement

Supported by : Ministry of Economy and Competitiveness of the Spanish Government, University of the Basque Country (UPV/EHU)

References

  1. S. Dutta, J. Ind. Eng. Chem. 20 (2014) 1148. https://doi.org/10.1016/j.jiec.2013.07.037
  2. W. Nabgan, T.A. Tuan Abdullah, R. Mat, B. Nabgan, Y. Gambo, M. Ibrahim, A. Ahmad, A.A. Jalil, S. Triwahyono, I. Saeh, Renewable Sustainable Energy Rev. 79 (2017) 347. https://doi.org/10.1016/j.rser.2017.05.069
  3. A. Arregi, M. Amutio, G. Lopez, J. Bilbao, M. Olazar, Energy Convers. Manage. 165 (2018) 696. https://doi.org/10.1016/j.enconman.2018.03.089
  4. J. Fermoso, F. Rubiera, D. Chen, Energy Environ. Sci. 5 (2012) 6358. https://doi.org/10.1039/c2ee02593k
  5. S. Saeidi, F. Fazlollahi, S. Najari, D. Iranshahi, J.J. Klemes, L.L. Baxter, J. Ind. Eng. Chem. 49 (2017) 1. https://doi.org/10.1016/j.jiec.2016.12.003
  6. R. Parajuli, T. Dalgaard, U. Jorgensen, A.P.S. Adamsen, M.T. Knudsen, M. Birkved, M. Gylling, J.K. Schjorring, Renewable Sustainable Energy Rev. 43 (2015) 244. https://doi.org/10.1016/j.rser.2014.11.041
  7. G. Perkins, T. Bhaskar, M. Konarova, Renewable Sustainable Energy Rev. 90 (2018) 292. https://doi.org/10.1016/j.rser.2018.03.048
  8. L. Wang, D. Li, M. Koike, S. Koso, Y. Nakagawa, Y. Xu, K. Tomishige, Appl. Catal. A 392 (2011) 248. https://doi.org/10.1016/j.apcata.2010.11.013
  9. A. Arregi, G. Lopez, M. Amutio, I. Barbarias, J. Bilbao, M. Olazar, RSC Adv. 6 (2016) 25975. https://doi.org/10.1039/C6RA01657J
  10. F. Chen, C. Wu, L. Dong, A. Vassallo, P.T. Williams, J. Huang, Appl. Catal. B 183 (2016) 168. https://doi.org/10.1016/j.apcatb.2015.10.028
  11. L. Dong, C. Wu, H. Ling, J. Shi, P.T. Williams, J. Huang, Fuel 188 (2017) 610. https://doi.org/10.1016/j.fuel.2016.10.072
  12. X. Zhao, J. Ren, J. Cao, F. Wei, C. Zhu, X. Fan, Y. Zhao, X. Wei, Energy Fuels 31 (2017) 4054. https://doi.org/10.1021/acs.energyfuels.7b00005
  13. P. Iovane, A. Donatelli, A. Molino, Biomass Bioenergy 56 (2013) 423. https://doi.org/10.1016/j.biombioe.2013.05.025
  14. A. Erkiaga, G. Lopez, M. Amutio, J. Bilbao, M. Olazar, Fuel Process. Technol. 116 (2013) 292. https://doi.org/10.1016/j.fuproc.2013.07.008
  15. T. Ogi, M. Nakanishi, Y. Fukuda, K. Matsumoto, Fuel 104 (2013) 28. https://doi.org/10.1016/j.fuel.2010.08.028
  16. A. Di Carlo, D. Borello, M. Sisinni, E. Savuto, P. Venturini, E. Bocci, K. Kuramoto, Int. J. Hydrogen Energy 40 (2015) 9088. https://doi.org/10.1016/j.ijhydene.2015.05.128
  17. L. Garcia, R. French, S. Czernik, E. Chornet, Appl. Catal. A 201 (2000) 225. https://doi.org/10.1016/S0926-860X(00)00440-3
  18. Z. Wang, Y. Pan, T. Dong, X. Zhu, T. Kan, L. Yuan, Y. Torimoto, M. Sadakata, Q. Li, Appl. Catal. A 320 (2007) 24. https://doi.org/10.1016/j.apcata.2006.12.003
  19. A. Remiro, B. Valle, A.T. Aguayo, J. Bilbao, A.G. Gayubo, Energy Fuels 27 (2013) 7549. https://doi.org/10.1021/ef401835s
  20. F. Seyedeyn-Azad, J. Abedi, S. Sampouri, Ind. Eng. Chem. Res. 53 (2014) 17937. https://doi.org/10.1021/ie5034705
  21. H. Xie, Q. Yu, Z. Zuo, Z. Han, X. Yao, Q. Qin, Int. J. Hydrogen Energy 41 (2016) 2345. https://doi.org/10.1016/j.ijhydene.2015.12.156
  22. F. Bimbela, J. Abrego, R. Puerta, L. Garcia, J. Arauzo, Appl. Catal. B 209 (2017) 346. https://doi.org/10.1016/j.apcatb.2017.03.009
  23. A. Arregi, G. Lopez, M. Amutio, M. Artetxe, I. Barbarias, J. Bilbao, M. Olazar, Fuel 216 (2018) 233. https://doi.org/10.1016/j.fuel.2017.12.002
  24. L. Santamaria, G. Lopez, A. Arregi, M. Amutio, M. Artetxe, J. Bilbao, M. Olazar, Appl. Catal. B 229 (2018) 105. https://doi.org/10.1016/j.apcatb.2018.02.003
  25. I. Barbarias, G. Lopez, J. Alvarez, M. Artetxe, A. Arregi, J. Bilbao, M. Olazar, Chem. Eng. J. 296 (2016) 191. https://doi.org/10.1016/j.cej.2016.03.091
  26. I. Barbarias, G. Lopez, M. Artetxe, A. Arregi, L. Santamaria, J. Bilbao, M. Olazar, J. Anal. Appl. Pyrolysis 122 (2016) 502. https://doi.org/10.1016/j.jaap.2016.10.006
  27. I. Barbarias, G. Lopez, M. Amutio, M. Artetxe, J. Alvarez, A. Arregi, J. Bilbao, M. Olazar, Appl. Catal. A 527 (2016) 152. https://doi.org/10.1016/j.apcata.2016.09.003
  28. I. Barbarias, G. Lopez, M. Artetxe, A. Arregi, J. Bilbao, M. Olazar, Energy Convers. Manage. 156 (2018) 575. https://doi.org/10.1016/j.enconman.2017.11.048
  29. A. Arregi, M. Amutio, G. Lopez, M. Artetxe, J. Alvarez, J. Bilbao, M. Olazar, Energy Convers. Manage. 136 (2017) 192. https://doi.org/10.1016/j.enconman.2017.01.008
  30. C. Rioche, S. Kulkarni, F.C. Meunier, J.P. Breen, R. Burch, Appl. Catal. B 61 (2005) 130. https://doi.org/10.1016/j.apcatb.2005.04.015
  31. Y. Park, T. Namioka, S. Sakamoto, T. Min, S. Roh, K. Yoshikawa, Fuel Process Technol. 91 (2010) 951. https://doi.org/10.1016/j.fuproc.2009.10.014
  32. A.C. Basagiannis, X.E. Verykios, Int. J. Hydrogen Energy 32 (2007) 3343. https://doi.org/10.1016/j.ijhydene.2007.04.039
  33. T. Namioka, A. Saito, Y. Inoue, Y. Park, T. Min, S. Roh, K. Yoshikawa, Appl. Energy 88 (2011) 2019.
  34. M. Koike, C. Ishikawa, D. Li, L. Wang, Y. Nakagawa, K. Tomishige, Fuel 103 (2013) 122. https://doi.org/10.1016/j.fuel.2011.04.009
  35. C. Wu, L. Dong, J. Onwudili, P.T. Williams, J. Huang, ACS Sustainable Chem. Eng. 1 (2013) 1083. https://doi.org/10.1021/sc300133c
  36. X. Xiao, J. Cao, X. Meng, D.D. Le, L. Li, Y. Ogawa, K. Sato, T. Takarada, Fuel 103 (2013) 135. https://doi.org/10.1016/j.fuel.2011.06.077
  37. B.S. Kwak, K.M. Kim, S.W. Jo, J.Y. Do, S. Kang, M. Park, N. Park, T.J. Lee, S.T. Lee, M. Kang, J. Ind. Eng. Chem. 37 (2016) 57. https://doi.org/10.1016/j.jiec.2016.03.002
  38. K.M. Kim, B.S. Kwak, Y. Im, N. Park, T.J. Lee, S.T. Lee, M. Kang, J. Ind. Eng. Chem. 51 (2017) 140. https://doi.org/10.1016/j.jiec.2017.02.025
  39. A. Donatelli, P. Iovane, A. Molino, Fuel 89 (2010) 2721. https://doi.org/10.1016/j.fuel.2010.03.040
  40. S. Luo, Y. Zhou, C. Yi, Energy 44 (2012) 391. https://doi.org/10.1016/j.energy.2012.06.016
  41. J.C. Acomb, C. Wu, P.T. Williams, Appl. Catal. B 147 (2014) 571. https://doi.org/10.1016/j.apcatb.2013.09.018
  42. K.M. Kim, B.S. Kwak, N. Park, T.J. Lee, S.T. Lee, M. Kang, J. Ind. Eng. Chem. 46 (2017) 324. https://doi.org/10.1016/j.jiec.2016.10.046
  43. A. Obradovic, B. Likozar, J. Levec, Int. J. Hydrogen Energy 38 (2013) 1419. https://doi.org/10.1016/j.ijhydene.2012.11.015
  44. A. Obradovic, B. Likozar, J. Levec, Ind. Eng. Chem. Res. 52 (2013) 13597. https://doi.org/10.1021/ie401551m
  45. M. Grilc, B. Likozar, J. Levec, Appl. Catal. B 150-151 (2014) 275. https://doi.org/10.1016/j.apcatb.2013.12.030
  46. J. Chen, J. Sun, Y. Wang, Ind. Eng. Chem. Res. 56 (2017) 4627. https://doi.org/10.1021/acs.iecr.7b00600
  47. A. Ochoa, I. Barbarias, M. Artetxe, A.G. Gayubo, M. Olazar, J. Bilbao, P. Castano, Appl. Catal. B 209 (2017) 554. https://doi.org/10.1016/j.apcatb.2017.02.015
  48. M. Marquevich, S. Czernik, E. Chornet, D. Montane, Energy Fuels 13 (1999) 1160. https://doi.org/10.1021/ef990034w
  49. A. Ochoa, A. Arregi, M. Amutio, A.G. Gayubo, M. Olazar, J. Bilbao, P. Castano, Appl. Catal. B 233 (2018) 289. https://doi.org/10.1016/j.apcatb.2018.04.002
  50. C.E. Efika, C. Wu, P.T. Williams, J. Anal. Appl. Pyrolysis 95 (2012) 87. https://doi.org/10.1016/j.jaap.2012.01.010
  51. M.A. Nahil, X. Wang, C. Wu, H. Yang, H. Chen, P.T. Williams, RSC Adv. 3 (2013) 5583. https://doi.org/10.1039/c3ra40576a
  52. Q.M.K. Waheed, P.T. Williams, Energy Fuels 27 (2013) 6695. https://doi.org/10.1021/ef401145w
  53. C. Wu, P.T. Williams, Appl. Catal. B 96 (2010) 198. https://doi.org/10.1016/j.apcatb.2010.02.022
  54. A. Dufour, A. Celzard, V. Fierro, F. Broust, C. Courson, A. Zoulalian, J.N. Rouzaud, Appl. Catal. A 490 (2015) 170. https://doi.org/10.1016/j.apcata.2014.10.038
  55. Z. Abdelsadek, M. Sehailia, D. Halliche, V.M. Gonzalez-Delacruz, J.P. Holgado, K. Bachari, A. Caballero, O. Cherifi, J. $CO_2$ Util. 14 (2016) 98. https://doi.org/10.1016/j.jcou.2016.03.004
  56. B. Rego de Vasconcelos, D. Pham Minh, P. Sharrock, A. Nzihou, Catal. Today (2017), doi:http://dx.doi.org/10.1016/j.cattod.2017.05.092.
  57. E.B. Pereira, N. Homs, S. Marti, J.L.G. Fierro, P. Ramirez de la Piscina, J. Catal. 257 (2008) 206. https://doi.org/10.1016/j.jcat.2008.05.001
  58. L. Bednarczuk, P. Ramirez de la Piscina, N. Homs, Int. J. Hydrogen Energy 40 (2015) 5256. https://doi.org/10.1016/j.ijhydene.2015.01.061
  59. L. Bednarczuk, P. Ramirez de la Piscina, N. Homs, Int. J. Hydrogen Energy 41 (2016) 19509. https://doi.org/10.1016/j.ijhydene.2016.05.038
  60. C. Montero, A. Remiro, A. Arandia, P.L. Benito, J. Bilbao, A.G. Gayubo, Fuel Process. Technol. 152 (2016) 215. https://doi.org/10.1016/j.fuproc.2016.07.002
  61. X. Zhao, G. Lu, Int. J. Hydrogen Energy 41 (2016) 13993. https://doi.org/10.1016/j.ijhydene.2016.05.042
  62. L. Oar-Arteta, A. Remiro, J. Vicente, A.T. Aguayo, J. Bilbao, A.G. Gayubo, Fuel Process. Technol. 126 (2014) 145. https://doi.org/10.1016/j.fuproc.2014.04.028
  63. L. Oar-Arteta, A.T. Aguayo, A. Remiro, J. Bilbao, A.G. Gayubo, Ind. Eng. Chem. Res. 54 (2015) 11285. https://doi.org/10.1021/acs.iecr.5b02901
  64. L. Oar-Arteta, A. Remiro, A.T. Aguayo, M. Olazar, J. Bilbao, A.G. Gayubo, J. Ind. Eng. Chem. 36 (2016) 169. https://doi.org/10.1016/j.jiec.2016.01.030
  65. E.A. Sanchez, R.A. Comelli, Int. J. Hydrogen Energy 37 (2012) 14740. https://doi.org/10.1016/j.ijhydene.2011.12.088
  66. L.F. Bobadilla, A. Penkova, A. Alvarez, M.I. Dominguez, F. Romero-Sarria, M.A. Centeno, J.A. Odriozola, Appl. Catal. A 492 (2015) 38. https://doi.org/10.1016/j.apcata.2014.12.029
  67. D. Li, M. Koike, L. Wang, Y. Nakagawa, Y. Xu, K. Tomishige, ChemSusChem 7 (2014) 510. https://doi.org/10.1002/cssc.201300855
  68. A. Remiro, A. Arandia, L. Oar-Arteta, J. Bilbao, A.G. Gayubo, Appl. Catal. B 237 (2018) 353. https://doi.org/10.1016/j.apcatb.2018.06.005
  69. G. Lopez, M. Olazar, M. Amutio, R. Aguado, J. Bilbao, Energy Fuels 23 (2009) 5423. https://doi.org/10.1021/ef900582k
  70. M. Amutio, G. Lopez, R. Aguado, J. Bilbao, M. Olazar, Energy Fuels 26 (2012) 1353. https://doi.org/10.1021/ef201662x
  71. M. Amutio, G. Lopez, M. Artetxe, G. Elordi, M. Olazar, J. Bilbao, Resour. Conserv. Recycl. 59 (2012) 23. https://doi.org/10.1016/j.resconrec.2011.04.002
  72. J. Alvarez, G. Lopez, M. Amutio, J. Bilbao, M. Olazar, Bioresour. Technol. 170 (2014) 132. https://doi.org/10.1016/j.biortech.2014.07.073
  73. H. Bamdad, K. Hawboldt, S. MacQuarrie, Renewable Sustainable Energy Rev. 81 (2018) 1705. https://doi.org/10.1016/j.rser.2017.05.261
  74. P. Lu, Q. Huang, Y. Chi, J. Yan, J. Anal. Appl. Pyrolysis 127 (2017) 47. https://doi.org/10.1016/j.jaap.2017.09.003
  75. M. Hu, M. Laghari, B. Cui, B. Xiao, B. Zhang, D. Guo, Energy 145 (2018) 228. https://doi.org/10.1016/j.energy.2017.12.096
  76. M. Uchimiya, S. Hiradate, M.J. Antal, ACS Sustainable Chem. Eng. 3 (2015) 1642. https://doi.org/10.1021/acssuschemeng.5b00336
  77. C.R. Smith, E.M. Buzan, J.W. Lee, ACS Sustainable Chem. Eng. 1 (2013) 118. https://doi.org/10.1021/sc300063f
  78. S. Czernik, R. French, C. Feik, E. Chornet, Ind. Eng. Chem. Res. 41 (2002) 4209. https://doi.org/10.1021/ie020107q
  79. J.A. Medrano, M. Oliva, J. Ruiz, L. Garcia, J. Arauzo, Energy 36 (2011) 2215. https://doi.org/10.1016/j.energy.2010.03.059
  80. S. Liu, M. Chen, L. Chu, Z. Yang, C. Zhu, J. Wang, M. Chen, Int. J. Hydrogen Energy 38 (2013) 3948. https://doi.org/10.1016/j.ijhydene.2013.01.117
  81. A. Remiro, B. Valle, A.T. Aguayo, J. Bilbao, A.G. Gayubo, Fuel Process. Technol. 115 (2013) 222. https://doi.org/10.1016/j.fuproc.2013.06.003
  82. D. Chen, K.O. Christensen, E. Ochoa-Fernandez, Z. Yu, B. Totdal, N. Latorre, A. Monzon, A. Holmen, J. Catal. 229 (2005) 82. https://doi.org/10.1016/j.jcat.2004.10.017
  83. K.O. Christensen, D. Chen, R. Lodeng, A. Holmen, Appl. Catal. A 314 (2006) 9. https://doi.org/10.1016/j.apcata.2006.07.028
  84. B. Valle, B. Aramburu, M. Olazar, J. Bilbao, A.G. Gayubo, Fuel 216 (2018) 463. https://doi.org/10.1016/j.fuel.2017.11.149
  85. B. Valle, B. Aramburu, P.L. Benito, J. Bilbao, A.G. Gayubo, Fuel 216 (2018) 445. https://doi.org/10.1016/j.fuel.2017.11.151
  86. S. Czernik, R. Evans, R. French, Catal. Today 129 (2007) 265. https://doi.org/10.1016/j.cattod.2006.08.071
  87. B. Valle, A. Remiro, A.T. Aguayo, J. Bilbao, A.G. Gayubo, Int. J. Hydrogen Energy 38 (2013) 1307. https://doi.org/10.1016/j.ijhydene.2012.11.014
  88. J. Remon, F. Broust, G. Volle, L. Garcia, J. Arauzo, Int. J. Hydrogen Energy 40 (2015) 5593. https://doi.org/10.1016/j.ijhydene.2015.02.117
  89. A. Ochoa, B. Aramburu, M. Ibanez, B. Valle, J. Bilbao, A.G. Gayubo, P. Castano, ChemSusChem 7 (2014) 2597. https://doi.org/10.1002/cssc.201402276
  90. I. Barbarias, M. Artetxe, G. Lopez, A. Arregi, J. Bilbao, M. Olazar, Fuel Process. Technol. 171 (2018) 100. https://doi.org/10.1016/j.fuproc.2017.11.003
  91. J.A. Moulijn, A.E. van Diepen, F. Kapteijn, Anonymous Handbook of Heterogeneous Catalysis, Wiley-VCH Verlag GmbH & Co KGaA, 2008.
  92. J.M. Rynkowski, T. Paryjczak, M. Lenik, Appl. Catal. A 106 (1993) 73. https://doi.org/10.1016/0926-860X(93)80156-K
  93. J.G. Seo, M.H. Youn, S. Park, I.K. Song, Int. J. Hydrogen Energy 33 (2008) 7427. https://doi.org/10.1016/j.ijhydene.2008.09.037
  94. R.M. Navarro, R. Guil-Lopez, A.A. Ismail, S.A. Al-Sayari, J.L.G. Fierro, Catal. Today 242 (2015) 60. https://doi.org/10.1016/j.cattod.2014.07.036
  95. F. Bimbela, M. Oliva, J. Ruiz, L. Garcia, J. Arauzo, Int. J. Hydrogen Energy 38 (2013) 14476. https://doi.org/10.1016/j.ijhydene.2013.09.038

Cited by

  1. Comparison of the regenerability of Co/sepiolite and Co/Al2O3 catalysts containing the spinel phase in simulated bio-oil steam reforming vol.214, pp.None, 2021, https://doi.org/10.1016/j.energy.2020.118971
  2. Catalyst Stability-Bottleneck of Efficient Catalytic Pyrolysis vol.11, pp.2, 2021, https://doi.org/10.3390/catal11020265
  3. Kinetic analysis and in-situ no support catalytic pyrolysis product distribution of Chinese herb residue vol.156, pp.None, 2021, https://doi.org/10.1016/j.jaap.2021.105114
  4. Coked Ni/Al2O3 from the catalytic reforming of volatiles from co-pyrolysis of lignin and polyethylene: preparation, identification and application as a potential adsorbent vol.11, pp.12, 2021, https://doi.org/10.1039/d1cy00448d
  5. Progress on Catalyst Development for the Steam Reforming of Biomass and Waste Plastics Pyrolysis Volatiles: A Review vol.35, pp.21, 2018, https://doi.org/10.1021/acs.energyfuels.1c01666
  6. Sorption enhanced ethanol steam reforming on a bifunctional Ni/CaO catalyst for H2 production vol.9, pp.6, 2021, https://doi.org/10.1016/j.jece.2021.106725
  7. Role of reforming agent in filamentous coke deposition on Ni/bio-char catalyst during non-oxygenates tar reforming vol.630, pp.None, 2022, https://doi.org/10.1016/j.apcata.2021.118446
  8. Monolithic biochar-supported cobalt-based catalysts with high-activity and superior-stability for biomass tar reforming vol.242, pp.None, 2018, https://doi.org/10.1016/j.energy.2021.122970
  9. Conditioning the volatile stream from biomass fast pyrolysis for the attenuation of steam reforming catalyst deactivation vol.312, pp.None, 2018, https://doi.org/10.1016/j.fuel.2021.122910