• 제목/요약/키워드: TEM(Transmission Electron Microscopy)

검색결과 1,076건 처리시간 0.028초

TEM을 이용한 비정질 박막의 구조분석

  • 백현석
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.74-74
    • /
    • 1999
  • TEM(투과전자현미경, Transmission Electron Microscop)은 결정재료뿐 아니라 비정질 재료까지도 원자단위의 구조를 연구하는데 매우 유용한 도구이다. 특히 200kV의 가속전압 투과전자현미경에 FEG(Field Emission Gun) 전자총이 장착되기 시작하면서 TEM은 비정질 구조 연구에 하나의 핵심적인 도구로서의 역할이 크게 기대되는 장비가 되었다. 본 연구에서는 TEM의 microanalysis accessary인 EELS(Electron Energy Loss Spectroscopy)technique을 주로 이용하던 기존의 방법대신 고 분해능(HRTEM(High Resolution Transmission Electron Microscopy)의 image로부터 비정질 정량묘사의 유일한 도구인 원자분포함수(RDF(Radial Distribution Function))로의 Reconstruction을 Simulation을 이용하여 시도하였다. 비정질 HRTEM image의 정량분석을 통하여 이 분야에서의 TEM의 한계를 이해하기 위하여 몇 모델을 제시하고 사용하였다. 또한 비정질 구조를 정량적으로 묘사하는 도구인 원자분포함수를 알아보고 비정질재료를 보다 물리적으로 모델링하기 위하여 가능한 모델 제시 후 첫 단계로서 HRTEM image에서 원자분포함수를 이끌어내기 위한 모델링을 수행하고 비정질 게르마늄(a-Ge) film에 대하여 실제로 적용하여 보았다. 마지막으로 실험적인 접근으로 200kV FE-TEm (poingt resolution 0.14nm) 으로 비정질 Ge의 image를 solw Scan CCD를 이용한 Elastic image를 Through Focus로 얻었으며 수치적인 정량비교를 역격자 공간에서 출발한 가장 물리적인 구조 모델을 이용하여 수행하였다. 모든 정량비교는 image의 Fourier 변환인 Diffractogram으로 하였다. 결론적으로, 많은 복잡한 수치 처리과정을 거쳐야 하지만 HRTEM의 image로부터 구조에 대한 정보(RDF)는 명확하게 얻을 수 있었다.

  • PDF

연성 이종 재료 시료의 상온 절편 제작법 (Sample Preparation of Ductile Heterogeneity Materials by Ultramicrotomy)

  • 채희수;권희석;제아름;이석훈;김진규
    • Applied Microscopy
    • /
    • 제42권1호
    • /
    • pp.49-52
    • /
    • 2012
  • For TEM study of biological samples or polymers that are contained in organic structure, it is often required that the sample is prepared by using ultramicrotome and stained with proper agents to increase the contrast of organic structure. In this study, we investigated an efficient TEM sample preparation method for ductile heterogeneity material by using ultramicrotomy. Cryo-ultramicrotomy is a suitable method that is capable of rendering sample hardness for various ductile materials. However, it has several factors to consider, such as experimental cost, working time and finding the optimal staining conditions. To satisfy these considerations, we prepared TEM sample by using ultramicrotome without cryofunction, and secured the sample hardness by applying the staining process prior to ultrathin sectioning. The cross-linked polyethylene structure in the sample was stained with the 2% $RuO_4$ solution in a sealed test tube for 24 hours at $4^{\circ}C$. After the sample staining, ultrathin sections of sample were prepared using ultramicrotome. As a result, it was revealed that the difficulties associated with staining of ultrathin sections prepared by low-temperature conditions were improved. In addition, appropriate staining depth of sample could be selected for sectioning process. The quality of TEM sample obtained by using this method was better than that of cryo-ultramicroscopy. Finally, it is expected that our method could be effectively applied in TEM sample preparation for a variety of nano-bio convergence materials.

Dedicated preparation for in situ transmission electron microscope tensile testing of exfoliated graphene

  • Kim, Kangsik;Yoon, Jong Chan;Kim, Jaemin;Kim, Jung Hwa;Lee, Suk Woo;Yoon, Aram;Lee, Zonghoon
    • Applied Microscopy
    • /
    • 제49권
    • /
    • pp.3.1-3.7
    • /
    • 2019
  • Graphene, which is one of the most promising materials for its state-of-the-art applications, has received extensive attention because of its superior mechanical properties. However, there is little experimental evidence related to the mechanical properties of graphene at the atomic level because of the challenges associated with transferring atomically-thin two-dimensional (2D) materials onto microelectromechanical systems (MEMS) devices. In this study, we show successful dry transfer with a gel material of a stable, clean, and free-standing exfoliated graphene film onto a push-to-pull (PTP) device, which is a MEMS device used for uniaxial tensile testing in in situ transmission electron microscopy (TEM). Through the results of optical microscopy, Raman spectroscopy, and TEM, we demonstrate high quality exfoliated graphene on the PTP device. Finally, the stress-strain results corresponding to propagating cracks in folded graphene were simultaneously obtained during the tensile tests in TEM. The zigzag and armchair edges of graphene confirmed that the fracture occurred in association with the hexagonal lattice structure of graphene while the tensile testing. In the wake of the results, we envision the dedicated preparation and in situ TEM tensile experiments advance the understanding of the relationship between the mechanical properties and structural characteristics of 2D materials.

Microstructural Analysis of Epitaxial Layer Defects in Si Wafer

  • Lim, Sung-Hwan
    • 한국재료학회지
    • /
    • 제20권12호
    • /
    • pp.645-648
    • /
    • 2010
  • The structure and morphology of epitaxial layer defects in epitaxial Si wafers produced by the Czochralski method were studied using focused ion beam (FIB) milling, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Epitaxial growth was carried out in a horizontal reactor at atmospheric pressure. The p-type Si wafers were loaded into the reactor at about $800^{\circ}C$ and heated to about $1150^{\circ}C$ in $H_2$. An epitaxial layer with a thickness of $4{\mu}m$ was grown at a temperature of 1080-$1100^{\circ}C$. Octahedral void defects, the inner walls of which were covered with a 2-4 nm-thick oxide, were surrounded mainly by $\{111\}$ planes. The formation of octahedral void defects was closely related to the agglomeration of vacancies during the growth process. Cross-sectional TEM observation suggests that the carbon impurities might possibly be related to the formation of oxide defects, considering that some kinds of carbon impurities remain on the Si surface during oxidation. In addition, carbon and oxygen impurities might play a crucial role in the formation of void defects during growth of the epitaxial layer.

Analysis of BNNT(Boron Nitride Nano Tube) synthesis by using Ar/N2/H2 60KW RF ICP plasma in the difference of working pressure and H2 flow rate

  • Cho, I Hyun;Yoo, Hee Il;Kim, Ho Seok;Moon, Se Youn;Cho, Hyun Jin;Kim, Myung Jong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.179-179
    • /
    • 2016
  • A radio-frequency (RF) Inductively Coupled Plasma (ICP) torch system was used for boron-nitride nano-tube (BNNT) synthesis. Because of electrodeless plasma generation, no electrode pollution and effective heating transfer during nano-material synthesis can be realized. For stable plasma generation, argon and nitrogen gases were injected with 60 kW grid power in the difference pressure from 200 Torr to 630 Torr. Varying hydrogen gas flow rate from 0 to 20 slpm, the electrical and optical plasma properties were investigated. Through the spectroscopic analysis of atomic argon line, hydrogen line and nitrogen molecular band, we investigated the plasma electron excitation temperature, gas temperature and electron density. Based on the plasma characterization, we performed the synthesis of BNNT by inserting 0.5~1 um hexagonal-boron nitride (h-BN) powder into the plasma. We analysis the structure characterization of BNNT by SEM (Scanning Electron Microscopy) and TEM (Transmission Electron Microscopy), also grasp the ingredient of BNNT by EELS (Electron Energy Loss Spectroscopy) and Raman spectroscopy. We treated bundles of BNNT with the atmospheric pressure plasma, so that we grow the surface morphology in the water attachment of BNNT. We reduce the advancing contact angle to purity bundles of BNNT.

  • PDF

중국산 해포석 내 석면 함유 유무 분석 (Asbestos Analysis of China Sepiolite by Transmission Electron Microscopy)

  • 송세욱;정용현;한정희
    • 한국산업보건학회지
    • /
    • 제23권3호
    • /
    • pp.205-211
    • /
    • 2013
  • Objectives: 21 sepiolite substances produced in China were investigated for the presence of asbestos in their materials. Materials and methods: In order to identify asbestos in sepiolite substances, test materials were analyzed using a transmission electron microscope equipped with energy dispersive X-ray spectrometer (TEM-EDS) for confirming their shape and components (atomic %). Results: Five of 21 sepiolte substances were asbestos-containing materials. Two chrysotile containing sepiolite proved to be asbestoscontaining materials, as did two chrysotile mixed with tremolite containing sepiolite. 16 sepiolite substances did not contain asbestos materials. Conclusions: When importing sepiolite substances, they must be analyzed to determine if there is asbestos in their materials.

3차원 복원을 위하여 특정 투사각도에서 획득한 TEM 영상열의 정렬 (Alignment of Tilted TEM Images for 3D Reconstruction)

  • 이준호;이지호;김동식
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2007년도 하계종합학술대회 논문집
    • /
    • pp.207-208
    • /
    • 2007
  • In this paper, the tilted image sequence, which is obtained the transmission electron microscopy (TEM) for a 3D reconstruction, is aligned based on the fiducial marker method. A direct correlation method is also conducted between adjacent tilted images for the performance comparison. Using real TEM tilted images, we can successfully perform the alignment.

  • PDF

Microstructural evolution of tantalum nitride thin films synthesized by inductively coupled plasma sputtering

  • Sung-Il Baik;Young-Woon Kim
    • Applied Microscopy
    • /
    • 제50권
    • /
    • pp.7.1-7.10
    • /
    • 2020
  • Tantalum nitride (TaNx) thin films were grown utilizing an inductively coupled plasma (ICP) assisted direct current (DC) sputtering, and 20-100% improved microhardness values were obtained. The detailed microstructural changes of the TaNx films were characterized utilizing transmission electron microscopy (TEM), as a function of nitrogen gas fraction and ICP power. As nitrogen gas fraction increases from 0.05 to 0.15, the TaNx phase evolves from body-centered-cubic (b.c.c.) TaN0.1, to face-centered-cubic (f.c.c.) δ-TaN, to hexagonal-close-packing (h.c.p.) ε-TaN phase. By increasing ICP power from 100 W to 400 W, the f.c.c. δ- TaN phase becomes the main phase in all nitrogen fractions investigated. The higher ICP power enhances the mobility of Ta and N ions, which stabilizes the δ-TaN phase like a high-temperature regime and removes the micro-voids between the columnar grains in the TaNx film. The dense δ-TaN structure with reduced columnar grains and micro-voids increases the strength of the TaNx film.

Synthesis and Characterization of 1-D BiSI and 2-D BiOI Nanostructures

  • Lee, Juheon;Min, Bong-Ki;Cho, Insu;Sohn, Youngku
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권3호
    • /
    • pp.773-776
    • /
    • 2013
  • We have prepared 1-D BiSI and 2-D BiOI nanostructures, and characterized them by scanning electron microscopy, transmission electron microscopy (TEM), X-ray diffraction crystallography, thermogravimetric analysis/differential scanning calorimetry, and UV-visible absorption. Here, we first report clear HR-TEM image of BiSI. In addition, we first found that the growth direction of BiSI is [12-1] plane, with the neighboring distance of 0.30 nm. The crystal structures of BiSI and BiOI are found to be orthorhombic (Pnam) and tetragonal (P4/nmm), respectively. The absorption band gaps of BiSI and BiOI are measured to be 1.55 and 1.92 eV, respectively. Our study could further highlight the applications of V-VI-VII compounds.