• 제목/요약/키워드: TEGDME

검색결과 6건 처리시간 0.018초

TEGDME 액체 전해질을 사용한 $Li/MoS_2$ 전지의 충.방전 특성 (The Charge-Discharge Performance of $Li/MoS_2$ Battery with liquid Electrolyte of Tetra(ethylene glycol] Dimethyl Ether[TEGDME])

  • 권정희;류호석;김기원;안주현;정용수;이건환;안효준
    • 한국수소및신에너지학회논문집
    • /
    • 제20권3호
    • /
    • pp.238-244
    • /
    • 2009
  • We investigated the electrochemical properties of lithium/molybdenum sulfide(Li/MoS$_2$) using tetra (ethylene glycol) dimethyl ether(TEGDME) electrolyte. The Li/TEGDME/MoS$_2$ cell showed the first discharge capacity of 288mAhg$^{-1}$. From the XRD, SEM results of the MOS$_2$ electrode in various cut-off voltage during charge-discharge process, MoS$_2$ partly changed into Li$_2$S and Mo during discharge and Li$_2$S partly recovered into MOS$_2$ and Li during charge. Full charged MOS$_2$ electrode showed lump shape of big size, which might be related to agglomerate of MoS$_2$ particles. Therefore, the degradation might be related to decrease of active material for electrochemical reaction by agglomeration of MOS$_2$.

Electrochemical Properties of Binary Electrolytes for Lithium-sulfur Batteries

  • Kim, Hyung-Sun;Jeong, Chang-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권10호
    • /
    • pp.3682-3686
    • /
    • 2011
  • The electrochemical properties of lithium-sulfur batteries with binary electrolytes based on DME and DOL, TEGDME and DOL mixed solvent containing $LiClO_4$, LiTFSI, and LiTF salts were investigated. The ionic conductivity of 1M LiTFSI and $LiClO_4$ electrolytes based on TEGDME and DOL increased as the volume ratio of DOL solvent increased, because DOL effectively reduces the viscosity of the above electrolytes medium under the same salts concentration. The first discharge capacity of lithium-sulfur batteries in the DME and DOL-based electrolyte followed this order: LiTFSI (1,000 mAh/g) > LiTF (850 mAh/g) > $LiClO_4$ (750 mAh/g). In case of the electrolyte based on TEGDME and DOL, the first discharge capacity of batteries followed this order: $LiClO_4$ (1,030 mAh/g) > LiTF (770 mAh/g) > LiTFSI (750 mAh/g). The cyclic efficiency of lithium-sulfur batteries at 1M $LiClO_4$ electrolytes is higher than that of batteries at other lithium salts-based electrolytes. Lithium-sulfur battery showed discharge capacity of 550 mAh/g until 20 cycles at all electrolytes based on DME and DOL solvent. By contrast, the discharge capacity of batteries was about 450 mAh/g at 1M LiTFSI and LiTF electrolytes based on TEGDME and DOL solvent after 20 cycles.

Optimization of electrolyte and carbon conductor for dilithium terephthalate organic batteries

  • Lim, Ji-Eun;Kim, Jae-Kwang
    • Korean Journal of Chemical Engineering
    • /
    • 제35권12호
    • /
    • pp.2464-2467
    • /
    • 2018
  • Organic batteries are attractive alternatives to conventional inorganic batteries because of their low cost, biodegradation, and renewability, and their consequent environmental friendliness. We investigated the influence of carbon conductors and electrolytes in organic batteries using dilithium terephthalate ($Li_2C_8H_4O_4$). The synthesized dilithium terephthalate has well-grown crystallinity and non-uniform shaped particles without impurities. The dilithium terephthalate-based battery shows good electrochemical properties with a LiTFSI/TEGDME electrolyte and graphene as the carbon conductor in an organic electrode. The results are ascribed to the high lithium transference number of LiTFSI/TEGDME and the high electrical conductivity of graphene.

PVdF계 미세기공 고분자 전해질의 전기화학적 특성 (Electrochemical Characteristics of Microporous Polymer Electrolytes Based on Poly(vinylidene-co-hexafluoropropylene))

  • 정강국;김종욱;안주현;김기원;안효준
    • 전기화학회지
    • /
    • 제7권4호
    • /
    • pp.183-188
    • /
    • 2004
  • 리튬 설퍼전지용 고분자 전해질을 개발하기 위해 상전이 방법으로 미세기공 P(VdF-HFP) 고분자 필름을 제조하였다. 미세기공 고분자 전해질은 NMP추출에 사용되는 증류수와 메탄올의 혼합 농도를 조절함으로써 고분자 필름 내부의 기공 구조 형성을 제어할 수 있었다. $80\%$ 메탄올로 제조한 미세기공 고분자 필름에 1M $LiCF_3SO_3-TEGDME/EC$의 액체 전해질을 함침시켜 제조한 고분자 전해질이 가장 높은 이온 전도도를 나타냈으며 리튬 이차전지에 사용 가능한 $2\times10^{-3}S/cm$의 이온전도도를 나타내었다. 또한 고분자 필름의 기공도가 균일하고 저장 시간에 따른 이온전도도 감소도 적었으며, 리튬 전극과의 계면저항도 가장 낮게 나타났다. 리튬염에 따른 이온전도도를 측정한 결과 $LiPF_6$를 사용한 고분자 전해질이 상온에서 $3.3\times10^{-3}S/cm$로 나타났다.

Lyophobized Ordered Mesoporous Silica Additives for Li-O2 Battery Cathode

  • Roev, Victor;Ma, Sang Bok;Lee, Dong Joon;Im, Dongmin
    • Journal of Electrochemical Science and Technology
    • /
    • 제5권2호
    • /
    • pp.58-64
    • /
    • 2014
  • The surface of an ordered mesoporous silica (OMS) was functionalized using 1H,1H,2H,2H-perfluorooctyltrimethoxysilane at $20^{\circ}C$ and $60^{\circ}C$. It was shown that only elevated temperature allows lyophobic properties on the walls of OMS, eventually preventing pore flooding with nonaqueous electrolytes. The functionalized OMSs (OMS-F) were characterized with various techniques: wettability test, $N_2$ sorption measurement, high-resolution transmission electron microscopy (HR-TEM). Cathodes of $10mg/cm^2$ loading were prepared with a commercial Pt/C catalyst and polyvinylidene fluoride (PVDF, 2.5 wt.%) binder using a typical doctor blade method on a commercial gas diffusion layer (GDL) in the presence or in the absence of OMS-F additives. Subsequent discharge-charge curves were taken in a 1M LiTFSI-TEGDME electrolyte at 60oC in pure oxygen atmosphere. It was found that the discharge capacity was significantly affected by OMS-F: 5 wt.% of additive extended discharge capacity by a factor 1.5. On the other hand, a similar OMS material but synthesized at $20^{\circ}C$ did not show lyophobic properties and deteriorated cathode capacity.

Electrochemical Performance of Lithium Sulfur Batteries with Plasticized Polymer Electrolytes based on P(VdF-co-HFP)

  • Park, Jeong-Ho;Yeo, Sang-Yeob;Park, Jung-Ki;Lee, Yong-Min
    • 전기화학회지
    • /
    • 제13권2호
    • /
    • pp.110-115
    • /
    • 2010
  • The plasticized polymer electrolytes based on polyvinylidene fluoride-co-hexafluoropropylene (P(VdF-co-HFP)), tetra (ethylene glycol) dimethyl ether (TEGDME), and lithium perchlorate ($LiClO_4$) are prepared for the lithium sulfur batteries by solution casting with a doctor-blade. The polymer electrolyte with EO : Li ratio of 16 : 1 shows the maximum ionic conductivity, $6.5\;{\times}\;10^{-4}\;S/cm$ at room temperature. To understand the effect of the salt concentration on the electrochemical performance, the polymer electrolytes are characterized using electrochemical impedance spectroscopy (EIS), infrared spectroscopy (IR), viscometer, and differential scanning calorimeter (DSC). The optimum concentration and mobility of the charge carriers could lead to enhance the utilization of sulfur active materials and the cyclability of the Li/S unit cell.