• Title/Summary/Keyword: TDR(Time Domain Reflectometry)

Search Result 125, Processing Time 0.026 seconds

Analysis of Sand Water Ratio and Drying Unit Weight Using Flat TDR System (Flat TDR 시스템을 이용한 모래의 함수비와 건조단위중량 분석)

  • Lee, Junesung;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.333-342
    • /
    • 2021
  • In this study was conducted to measure the water content and dry unit weight of the ground using TDR (Time Domain Reflectometry) in order to supplement the problems of the conventional compaction management method. The Flat TDR system is a device that does not cause ground disturbance, and in order to verify the measured values, the dry density and water content were measured for samples of the ground subject at 7 sites other than Jumunjin Standard Temple. The water content section was divided into 6 sections of 3, 6, 9, 12, 15, and 18%, and the experimental results were confirmed according to the unified classification method. As a result of the indoor experiment, the water content showed an error of about 0.7% for the SP sample and about 1.3% for the SM sample. In addition, the dry unit weight confirmed an error of about 7% for the SP sample and about 5% for the SM sample. It was confirmed that stable values were derived in sandy or silty sandy ground except for clay or gravel. Through the experimental results, it was confirmed that the measured values of the flat TDR system derive similar values to the existing traditional compaction management method, and it was determined that the flat TDR equipment was suitable for construction sites that require quick constructability and economic feasibility.

Development and Application of TDR Penetrometer for Evaluation of Soil Water Content of Subsoil (지반의 함수비 평가를 위한 관입형 TDR 프로브의 개발 및 적용)

  • Hong, Won-Taek;Jung, Young-Seok;Lee, Jong-Sub;Byun, Yong-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.2
    • /
    • pp.39-46
    • /
    • 2015
  • Dielectric constant depends on the variation of soil water content, and the estimation of soil water content using time domain reflectometry (TDR) has been studied by many researchers. The purpose of this study is the development and application of TDR penetrometer (TDRP) in order to evaluate the soil water content according to the penetration depth. The TDRP consists of cone, sleeve, driving rod, hammer, and guide. Three electrodes, which are used to measure the dielectric constant of soils, are mounted on the surface of sleeve and, in turn, connected with coaxial cable and time domain reflectometer. To establish the relationship between the volumetric water content and dielectric constant, several laboratory tests by using the TDRP are performed in the specimens with a variety of volumetric water content. The experimental results show that the dielectric constant is strongly correlated to volumetric water content as polynomial equations with an order of 3. In addition, the volumetric water content calculated from the dielectric constant is similar to that obtained from the sample weight. In the field, a small sampler is used to compare the volumetric water content calculated from the dielectric constant with the volumetric water content obtained from the sample. The results of field application demonstrate that the volumetric water content estimated by the TDRP shows similar trend to the gravimetric water content of sample. This study suggests that the TDRP is effectively used to evaluate the volumetric water content of unsaturated soils according to the penetration depth.

Calculation of Bulk and Solution Electrical Conductivity of Soil Using Time Domain Reflectometry Measurements (TDR을 이용한 토양 총전기전도도 및 용액전기전도도 측정)

  • Bae, Byung-Sul;Choi, Woo-Jung;Han, Gwang-Hyun;Han, Kyung-Hwa;Yoo, Sun-Ho;Ro, Hee-Myong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • Time domain reflectometry (TDR) is a newly developed method for measuring simultaneously solute concentrations and volumetric water content of soil. Bulk electrical conductivity ($EC_a$) of soil is obtained from TDR signal using several equations proposed, and electrical conductivity of soil solution ($EC_w$) can be calculated using the linear relationship $EC_a=EC_w\theta(a\theta+b)+EC_s$ between $EC_a$ and $EC_w$ at constant soil water content. The objectives of this study were to evaluate $EC_a$ proposed by several workers and to obtain the empirical constants (a, b, and $EC_s$) for $EC_w$ of the soils from A, Bl, and B2 horizon of an agricultural field (Coarse loamy, Fluvaquentic Eutrudepts). The $EC_a$ proposed by Yanuka et al. responded most sensitively to the KCl solute concentrations. The empirical constants of a, b, and $EC_s$ for $EC_w$ were -0.249, 1.358, and 0.054 for A horizon, -2.518, 2.708, and 0.097 for Bl horizon, and 2.490, -0.250, and 0.103 for B2 horizon, respectively. Therefore, the results of this study showed that Yanuka et al. equation was most useful one in determining $EC_a$, from TDR signal for agricultural soil with low salinity and that the empirical constants for the calculation of $EC_w$, from $EC_a$ can be obtained through a simple calibration experiment.

Comparison of Daily Soil Water Contents Obtained by Energy Balance-Water Budget Approach and TDR

  • Rim, Chang-Soo
    • Korean Journal of Hydrosciences
    • /
    • v.8
    • /
    • pp.57-68
    • /
    • 1997
  • The daily soil water contents were obtained from the time domain reflectometry(TDR) method and energy balance-water budget approach with eddy correlation at the two small semiarid watersheds of Lucky Hills and Kendall during the summer rainy period. There was a comaprison of daily soil water content measured and estimated from these two different approaches. The comparison is valuable to evaluate the accuracy of current soil water content measuring system using TDR and energy balance-water budget approach using eddy correlation method at a small watershed scale. The degree of simiarity between the regressions of these two methods of measuring soil water content was explained by determining the correlations between these methods. Simple linear regression analyses showed that soil water content measured from TDR method was responsible for 58% and 63% of the variations estimated from energy balance-water budget approach with edy correlation at Lucky Hills and Kendall, respectively. The scatter plots and the regression analyses revealed that two different approaches for soil water content measurement at a small watershed scale have no significant difference.

  • PDF

Temperature Sensitivity Analysis of TDR Moisture Content Sensor for Road Pavement (도로하부 함수비 계측을 위한 TDR 방식 함수비 센서 온도 민감도 분석)

  • Cho, Myunghwan;Lee, Yoonhan;Kim, Nakseok;Jee, Keehwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.329-336
    • /
    • 2013
  • The infrastructure of flexible pavement is composed of aggregate subbase, anti-frost layer, and subgrade. In particular, the subgrade performance is affected by climates such as frost action and precipitation. The method of TDR(Time Domain Reflectometry) sensors to measure moisture contents in subgrade layer has been used in the research. Due to the TDR method using dielectric permitivity of soil and water, the sensors can be affected by the low subgrade temperatures. The air temperatures frequently drops below $-20^{\circ}C$ in the winter in Korea. As a result, it is necessary to estimate the accuracy of the TDR moisture sensors in the range of below zero temperatures. In this study, the subgrade temperatures of lower than $-2^{\circ}C$ were extended to evaluate temperature sensitivity of the TDR moisture sensors. The test results revealed that the moisture contents around the sensors were reduced while those of the upper part of specimen showed a tendency to increase as the specimen surface temperature drops below zero under the volumetric moisture contents(VMC) of 20% and 30%. However, the impact of temperature on the function of the sensor at lower water contents was found to be negligible if any.

Development of a Flat-type TDR System for Compaction Control (다짐관리를 위한 판형 TDR 시스템 개발)

  • Song, Minwoo;Choi, Chanyong;Kim, Daehyeon
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.4
    • /
    • pp.51-61
    • /
    • 2016
  • In this study, a new TDR system equipped with a flat type probe has been developed to improve the currently used TDR system that measures dry density and water content. To verify the developed TDR system, TDR tests were conducted on Jumunjin sand and three typical soils. Also, additional tests were performed to measure the correction value of the developed probe. Using the TDR signals, dielectric constant, electrical conductivity and soil constants were derived. The water content and dry density of the soils were determined through the TDR tests. The applicability of the TDR system was examined by comparison of the measured values by TDR and the real values. The values of dry density and water content were found to have about 2% and 0.5% error, respectively. Based on the test results, it has been confirmed that the new TDR system can be used as an alternative to the previous TDR system as it can measure the dry density and the water content with reasonable accuracy, leading to significant time and cost savings.

Establishment and Operation of Soil Moisture Monitoring System Considering Temporal and Spatial Representation (시공간 대표성을 고려한 토양수분 모니터링 System의 구축 및 운영)

  • Kim, Ki Hoon;Kim, Sang Hyun;Lee, Ga Yeong;Kim, Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.184-189
    • /
    • 2004
  • A soil moisture measuring method for a hillslope of Korean watershed was developed to configure spatial-temporal distribution of soil moisture. Intensive surveying of topography had been performed to make a refined digital elevation model(DEM) and the hydrological interpretation from flow distribution algorithm was incorporated through reverse surveying. Moreover, A long term measurement system was established to maximize representative features of spatial variation of soil moisture and operated from October 19 to 21, 2003. TDR(Time Domain Reflectometry) with a multiplex monitoring system has been operated for accurate measurements. Measurements were performed at the right side hillslope of Buprunsa located at the sulmachun watershed. The data of temporal and spatial soil moisture variation by rainfall event were collected and the variations of soil moisture were well captured.

  • PDF

Spatial-temporal Distribution of Soil Moisture at Bumreunsa Hillslope of Sulmachun Watershed Through an Intensive Monitoring (설마천 유역 범륜사사면의 토양수분 시공간 집중변화양상의 측정)

  • Lee, Ga-Young;Kim, Ki-Hoon;Oh, Kyung-Joon;Kim, Sang-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.5 s.154
    • /
    • pp.345-354
    • /
    • 2005
  • Time Domain Reflectometry (TDR) with multiplex system has been installed to configure the spatial and temporal characteristics of soil moisture at the Bumreunsa hillslope of Sulmachun Watershed. An intensive surveying was performed to build a refined digital elevation model (DEM) and flow determination algorithms with inverse surveying have been applied to establish an efficient soil moisture monitoring system. Soil moisture data were collected through intensive monitoring during 380 hrs in November of 2003. Soil moisture data shows corresponding variation characteristics of soil moisture on the upper, middle and lower parts of the hillslope which were classified from terrain analysis. Measured soil moisture data have been discussed on the context of physical process of hydrological modeling.

Measurement of the permittivity of insulation oil at UHF Band using TDR Method (TDR을 이용한 극초단파 대역에서 절연유 유전율 측정)

  • Goo, Sun-Geun;Ju, Hyung-Jun;Park, Ki-Jun;Han, Ki-Seon;Yoon, Jin-Yul
    • Proceedings of the KIEE Conference
    • /
    • 2008.05a
    • /
    • pp.173-174
    • /
    • 2008
  • Time Domain Reflectometry(TDR) 기법을 응용하여 극초단파 대역을 포함하는 광대역 주파수범위에서 절연유의 유전율을 쉽게 측정할 수 있는 기법을 제안하였다. 수 GHz 이상의 대역에서의 절연유 유전율은 전자파를 이용한 전력용 변압기 부분방전 발생위치 추정에 필수적인 정보이나 기존의 방법으로 간단히 측정할 수 없었다. 본 기법은 동축구조에서 전자파 진행속도가 절연매질 유전율의 함수로 인가된 펄스파의 매질에 대한 동축선로에서 진행시간을 계산함으로써 유전율을 구하는 간단한 방법이다. 제안한 새로운 방법을 이용해 절연유중 1종4호 신유의 경우 광대역에서의 유전율은 2.1임을 알 수 있었다.

  • PDF

Inductance Characterization of Bonding Wires for 1-10㎓ Radio Frequency Packages (1-10 ㎓ 초고주파 패키지용 bonding wire 인덕턴스 특성 측정)

  • Jung, Tae-Ho;Jee, Yong
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.221-224
    • /
    • 2001
  • In this paper, the bonding wire interconnection has been studied from the points of view of modeling and electrical characterization. The bonding wire is measured by TDR(Time Domain Reflectometry) and Network analyzer(1-10㎓). First, one gold bonding wire mounted on 2mm gap substrate measured 3.68nH by TDR and 3.39nH by Network analyzer(6㎓). Two gold bonding wire mounted on 2mm gap substrate measured 3.14nH by TDR and 2.80nH by Network analyzer. This result presented that inductance of bonding wire could be employed as inductors for radio frequency circuit packaging.

  • PDF