• Title/Summary/Keyword: TDI(time delay integration)

Search Result 13, Processing Time 0.025 seconds

Performance Characteristics for the Variation of Altitude and Tilt Angle in the Satellite Imager Using Time Delay and Integration(TDI) (Time Delay and Integration(TDI)을 사용하는 위성 영상 기기의 고도 및 촬영각 변화에 대한 성능 특성)

  • 조영민
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.2
    • /
    • pp.91-96
    • /
    • 2002
  • The performance characteristics of a satellite imager using a Time Delay and Integration(TDI) Charge Coupled Device (CCD) with fixed integration time is investigated for the variation of satellite altitude and tilt angle. In consequence of the investigation TDI synchronization using tilt imaging is proposed as a solution to compensate geometric performance degradation due to altitude decrease. The tilt angle optimized for the TDI synchronization at decreased altitude is presented. This result can be used for a TDI CCD imager with variable integration time in a certain range as well.

Study on the Synchronization of Time Delay and Integration of Satellite Imager for Satellite Altitude Variation (위성 고도 변화에 대한 위성 영상 기기의 Time Delay and Integration 일치 연구)

  • 조영민;김해동
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.235-240
    • /
    • 2004
  • Time Delay and Integration (TDI) 기법을 사용하는 고해상도 위성 영상기에 있어서 실제 위성 운영시 발생하는 위성 고도의 순간적 변화에 대한 TDI 일치를 연구하였다. 시간에 따라 변하는 순간 고도의 특성을 분석하였고 순간 고도 변화가 TDI 불일치를 초래하여 위성 영상 기기의 성능에 미치는 영향을 분석하였다. TDI 시간 지연을 조절하여 실제 위성 운영에서 순간적으로 발생하는 TDI 불일치를 보정하고 성능을 향상시킬 수 있는 가능성을 연구하였다. 본 연구 결과는 위성 영상 품질 향상에 활용될 수 있다.

  • PDF

Performance Characteristics of Time Delay and Integration(TDI) Satellite Imager for Altitude Change and Line-Of-Sight Tilt over Spherical Earth Surface

  • Cho, Young-Min
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.216-221
    • /
    • 2002
  • A spherical Earth surface is used fur realistic analysis of the geometrical performance characteristics about the variation of satellite altitude and 2-dimensional line-of-sight(LOS) tilt angle in a satellite imager using Time Delay and Integration(TDI) technique with fixed integration time. In the spherical Earth surface model TDI synchronization using LOS tilt is investigated as a solution to compensate geometric performance degradation due to altitude decrease. This result can be used fur a TDI CCD imager with variable integration time in a certain as well.

  • PDF

Study on the Synchronization of Time Delay and Integration against Osculating Altitude Variation in Satellite Imager (순간 고도 변화에 대한 위성 영상 기기의 Time Delay and Integration 일치 연구)

  • Cho Young-Min;Kim Hae-Dong
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.4
    • /
    • pp.227-234
    • /
    • 2004
  • The synchronization of Time Delay and Integration (TDI) against the temporal variation of osculating altitude in the operation of high resolution satellite imager was studied. The characteristics of osculating altitude variation was analyzed and its impact on the performance of TDI imger was also investigated. A practical ]me rate control method was proposed to compensate instantaneous TDI mismatch due to the osculating altitude variation, so that geometrical performance enhancement was achieved by the proposed method. This study is applicable to real satellite operation and can be useful for satellite image quality enhancement.

Performance Compensation of the Satellite Imager below Normal Altitude Using Line-Of-Sight Tilt over Spherical Earth Surface (구면 지표에서 경사촬영을 이용한 위성 영상기의 고도 저하 성능 보정)

  • 조영민
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.2
    • /
    • pp.117-124
    • /
    • 2004
  • A spherical earth surface is used for realistic analysis of the geometrical performance characteristics generated by 2-dimensional line-of-sight (LOS) tilt of the satellite imager using the Time Delay and Integration(TDI) technique. A 2-dimensional LOS tilt ever the spherical Earth surface is proposed to compensate geometric performance degradation caused by the satellite altitude decrease below the normal operation altitude. The compensation can be achieved by TDI re-match without degradation of modulation transfer function and with ground sample distance slightly increased. Effective methods of LOS tilt for the compensation are investigated. This study can be useful for mission assurance and flexibility in imager operation.

Analysis on Mission and Maneuver in High Resolution Satellite with TDI (TDI를 사용하는 고해상도 위성의 임무 및 기동 분석)

  • 김희섭;김규선;김응현;정대원
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.9
    • /
    • pp.53-59
    • /
    • 2006
  • Need for agile satellite increases for performing various mission due to increase of satellite image applications and users. In high resolution satellite TDI (time delay and integration) method is adopted in order to improve SNR. But image quality can be degraded by satellite maneuver. In this paper requirements for remote sensing in high resolution satellite with agility are extracted and an approach to operate the agile satellite to perform the missions are proposed. The proposed approach in this paper will be applicable to system level design and analysis.

Development of Inspection System for Aluminum Castings with X-Ray TDI Camera (X-Ray TDI Camera를 이용한 알루미늄 주강품 검사장치 개발)

  • Nam, Mun-Ho;Park, Seong-Wook;Kim, Chang-Ho;Chung, Chan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1734-1735
    • /
    • 2011
  • In case of inspection on aluminum castings, traditional RT (Radiographic Testing) method have been utilized for its advantages in interpretation, cost and perpetual storage. But it has disadvantages like time consumption in film processing, low efficiency in storage and environmental pollution. In this thesis, a DRS (Digital Radiography System) utilizing X-Ray TDI Camera (Time Delay and Integration Camera) is developed. Inspections on aluminum castings are performed using the developed Digital Radiography System, DRS and reviewed if newly developed system can substitute for the traditional method.

  • PDF

KOMPSAT-2 위성의 요각 계산방법 연구

  • Kim, Jong-Ah;Kang, Keum-Sil;Jang, Young-Jun;Yong, Sang-Soon;Kang, Song-Doug;Youn, Heong-Sik
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.160-169
    • /
    • 2004
  • In order to get the high resolution satellite image, MSC has TDI function in the KOMPSAT-2. So it is required to control the yaw angle of the attitude as operation concepts of KOMPSAT-2. This study was to explain the TDI function, to set up the geometric equation to satisfy the condition, and finally to determine the equation of yaw angle. The calculating program was developed and simulated with orbit and imaging attitude as input data, and the results were compared with the yaw steering values calculated in the on-board computer.

  • PDF

MTF measuring method of TDI camera electronics

  • Kim, Young-Sun;Kong, Jong-Pil;Heo, Haeng-Pal;Park, Jong-Euk;Yong, Sang-Soon;Choi, Hae-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.540-543
    • /
    • 2007
  • The modulation transfer function (MTF) in a camera system is a measurement of how well the system will faithfully reproduce the original scene. The electro-optical camera system consists of optics, an array of pixels, and an electronics which is related to the image signal chain. The system MTF can be cascaded with each element's MTF in the frequency domain. That is to say, the electronics MTF including the detector MTF can be recalculated easily by the acquired system MTF if the well-known test optics is used in the measuring process. A Time-Delay and Integration (TDI) detector can make a signal increase by taking multiple exposures of the same object and adding them. It can be considered the various methods to measure the MTF of the TDI camera system. This paper shows the actual and practical MTF measuring methods for the detector and electronics in the TDI camera. The several methods are described according to the scan direction as well as the TDI stages such as the single line mode and the multiple-lines mode. The measuring is performed in the in the static condition or dynamic condition to get the point spread function (PSF) or the line spread function (LSF). Especially, the dynamic test bench is used to simulate on track velocity to synchronize with TDI read out frequency for the dynamic movement.

  • PDF

고해상도 위성카메라의 선형운동에 의한 영상번짐 해석

  • 장홍술
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.103-103
    • /
    • 2003
  • 공간해상도가 높고 영상 신호량의 증가를 위해 TDI(time delay and integration) 방식의 센서를 이용하는 저궤도 위성카메라의 경우 지구의 자전효과나 위성의 자세 불안정 등으로 인해 촬영된 영상의 퍼짐현상(smearing)이 나타난다. 본 연구에 따르면 선형운동에 의한 결과로 발생하는 영상퍼짐은 위성의 자세제어 특성 뿐 만 아니라 위성의 궤도 특성과 TDI 단계, 지상 촬영 지점의 위도 및 경사촬영 각도에 의해 결정되며 다목적 실용위성 2호(KOMPSAT2)의 탑재카메라를 실례로 살펴본 해상도 1m급의 태양동기궤도 위성의 경우 별도의 보정 과정이 없을 경우 영상의 퍼짐이 심각한 것으로 나타난다. 주된 원인은 지구의 자전효과이며 영상퍼짐의 정도는 위성 직하점의 위도에 따라 변하고 카메라의 경사촬영 각도와는 연관성이 작은 것으로 나타난다. 또한 촬영전에 자세제어를 이용해 카메라의 Yaw축 각도를 조정할 경우 영상퍼짐현상이 현저히 감소함을 보여준다.

  • PDF