• Title/Summary/Keyword: TCP Service Fairness

Search Result 47, Processing Time 0.025 seconds

Performance Analysis of Random Early Dropping Effect at an Edge Router for TCP Fairness of DiffServ Assured Service

  • Hur Kyeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4B
    • /
    • pp.255-269
    • /
    • 2006
  • The differentiated services(DiffServ) architecture provides packet level service differentiation through the simple and predefined Per-Hop Behaviors(PHBs). The Assured Forwarding(AF) PHB proposed as the assured services uses the RED-in/out(RIO) approach to ensusre the expected capacity specified by the service profile. However, the AF PHB fails to give good QoS and fairness to the TCP flows. This is because OUT(out- of-profile) packet droppings at the RIO buffer are unfair and sporadic during only network congestion while the TCP's congestion control algorithm works with a different round trip time(RTT). In this paper, we propose an Adaptive Regulating Drop(ARD) marker, as a novel dropping strategy at the ingressive edge router, to improve TCP fairness in assured services without a decrease in the link utilization. To drop packets pertinently, the ARD marker adaptively changes a Temporary Permitted Rate(TPR) for aggregate TCP flows. To reduce the excessive use of greedy TCP flows by notifying droppings of their IN packets constantly to them without a decrease in the link utilization, according to the TPR, the ARD marker performs random early fair remarking and dropping of their excessive IN packets at the aggregate flow level. Thus, the throughput of a TCP flow no more depends on only the sporadic and unfair OUT packet droppings at the RIO buffer in the core router. Then, the ARD marker regulates the packet transmission rate of each TCP flow to the contract rate by increasing TCP fairness, without a decrease in the link utilization.

A Fair Scalable Inter-Domain TCP Marker for Multiple Domain DiffServ Networks

  • Hur, Kyeong;Eom, Doo-Seop
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.338-350
    • /
    • 2008
  • The differentiated services (DiffServ) is proposed to provide packet level service differentiations in a scalable manner. To provide an end-to-end service differentiation to users having a connection over multiple domains, as well as a flow marker, an intermediate marker is necessary at the edge routers, and it should not be operated at a flow level due to a scalability problem. Due to this operation requirement, the intermediate marker has a fairness problem among the transmission control protocol (TCP) flows since TCP flows have intrinsically unfair throughputs due to the TCP's congestion control algorithm. Moreover, it is very difficult to resolve this problem without individual flow state information such as round trip time (RTT) and sending rate of each flow. In this paper, to resolve this TCP fairness problem of an intermediate marker, we propose a fair scalable marker (FSM) as an intermediate marker which works with a source flow three color marker (sf-TCM) operating as a host source marker. The proposed fair scalable marker improves the fairness among the TCP flows with different RTTs without per-flow management. Through the simulations, we show that the FSM can improve TCP fairness as well as link utilization in multiple domain DiffServ networks.

Internet Protocols Over ABR and UBR Services: Problems, Approaches, and Their Evaluation (ABR과 UBR 서비스 상에서 인터넷 프로토콜: 문제점, 해결방안, 그리고 성능평가)

  • Park, Seung-Seop;Yuk, Dong-Cheol
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.11S
    • /
    • pp.3260-3268
    • /
    • 1999
  • As the proliferation of multimedia traffic over High-speed Internet increases, ATM network will be vital to adopt as backbone network over various parts of Internet. In this paper, we investigate the performance of TCP/IP traffic flow over ABR and UBR of ATM service to study for the high throughput and good fairness by simulation technique. Although TCP is run in the transport layer, it is controlled by several methods, e.g, EPD, PPD, RED, EFCI, ER etc, in ATM layer when TCP uses the ABR/UBR service. Therefore, if one cell is discarded in ATM layer, a packet of TCp will be laost. And, also, along with the increasing of the number of VC among switches, the throughput and fairness will be degraded. In order to improve these degradations, we propose the effective parameter control operations of EFCI and ER on ABR service, and also suggest the buffer management methods on UBR service. Finally, through the simulation results, the improved throughput and fairness are shown.

  • PDF

A New Queueing Algorithm for Improving Fairness between TCP Flows (TCP 플로우 간의 공정성 개선을 위한 새로운 큐잉 알고리즘)

  • Chae, Hyun-Seok;Choi, Myung-Ryul
    • The KIPS Transactions:PartC
    • /
    • v.11C no.2
    • /
    • pp.235-244
    • /
    • 2004
  • TCP Vegas version provides better performance and more stable services than TCP Tahoe and Reno versions, which are widely used in the current Internet. However, in the situation where TCP Vegas and Reno share the bottleneck link, the performance of TCP Vegas is much smaller than that of TCP Reno. This unfairness is due to the difference of congestion control mechanisms of each TCP use. Several studies have been executed in order to solve this unfairness problem. In this paper, we analyze the minimum window size to maintain the maximum TCP performance of link bandwidth. In addition, we propose an algorithm which maintains the TCP performance and improves fairness by selective packet drops in order to allocate proper window size of each TCP connections. To evaluate the performance of the proposed algorithm, we have measured the number of data bytes transmitted between end-to-end systems by each TCP connections. The simulation results show that the proposed algorithm maintains the maximum TCP performance and improves the fairness.

A Modified REDP Aggregate Marker for improving TCP Fairness of Assured Services

  • Hur Kyeong;Eom Doo-Seop;Tchah Kyun-Hyon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1B
    • /
    • pp.86-100
    • /
    • 2004
  • To provide the end-to-end service differentiation for assured services, the random early demotion and promotion (REDP) marker in the edge router at each domain boundary monitors the aggregate flow of the incoming in-profile packets and demotes in-profile packets or promotes the previously demoted in-profile packets at the aggregate flow level according to the negotiated interdomain service level agreement (SLA). The REDP marker achieves UDP fairness in demoting and promoting packets through random and early marking decisions on packets. But, TCP fairness of the REDP marker is not obvious as for UDP sources. In this paper, to improve TCP fairness of the REDP marker, we propose a modified REDP marker where we combine a dropper, meters and a token filling rate configuration component with the REDP marker. To make packet transmission rates of TCP flows more fair, at the aggregate flow level the combined dropper drops incoming excessive in-profile packets randomly with a constant probability when the token level in the leaky bucket stays in demotion region without incoming demoted in-profile packets. Considering the case where the token level cannot stay in demotion region without the prior demotion, we propose a token filling rate configuration method using traffic meters. By using the token filling rate configuration method, the modified REDP marker newly configures a token filling rate which is less than the negotiated rate determined by interdomain SLA and larger than the current input aggregate in-profile traffic rate. Then, with the newly configured token filling rate, the token level in the modified REDP marker can stay in demotion region pertinently fir the operation of the dropper to improve TCP fairness. We experiment with the modified REDP marker using ns2 simulator fur TCP sources at the general case where the token level cannot stay in demotion region without the prior demotion at the negotiated rate set as the bottleneck link bandwidth. The simulation results demonstrate that through the combined dropper with the newly configured token filling rate, the modified REDP marker also increases both aggregate in-profile throughput and link utilization in addition to TCP fairness improvement compared to the REDP marker.

Performance Analysis of REDP Marker with a combined Dropper for improving TCP Fairness of Assured Services

  • Kyeong Hur;Lee, Yeonwoo;Cho, Choon-Gen;Park, Hyung-Kun;Eom, Doo-Seop;Tchah, Kyun-Hyon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7B
    • /
    • pp.711-721
    • /
    • 2004
  • To provide the end-to-end service differentiation for assured services, the random early demotion and promotion (REDP) marker in the edge router at each domain boundary monitors the aggregate flow of the incoming in-profile packets and demotes in-profile packets or promotes the previously demoted in-profile packets at the aggregate flow level according to the negotiated interdomain service level agreement (SLA). The REDP marker achieves UDP fairness in demoting and promoting packets through random and early marking decisions on packets. But, TCP fairness of the REDP marker is not obvious as fur UDP sources. In this paper, to improve TCP fairness of the REDP marker, we combine a dropper with the REDP marker. To make packet transmission rates of TCP flows more fair, at the aggregate flow level the combined dropper drops incoming excessive in-profile packets randomly with a constant probability when the token level in the leaky bucket stays In demotion region without incoming demoted in-profile packets. It performs a dropping in the demotion at a domain boundary only if there is no prior demotion. The concatenate dropping at multiple domains is avoided to manifest the effect of a dropping at a domain boundary on TCP fairness. We experiment with the REDP marker with the combined dropper using ns2 simulator for TCP sources. The simulation results show that the REDP marker with the combined dropper improves TCP fairness in demoting and promoting packets by generating fair demoted in-profile traffic compared to the REDP marker. The effectiveness of the selected drop probability is also investigated with showing its impact on the performance of the REDP marker with the combined dropper.

A Study on Control Scheme for Fairness Improvement of Assuared Forwarding Services in Differentiated Service Network (DiffServ 망에서 AF 서비스의 공평성 향상을 위한 제어 기법)

  • Kim, Byun-gon;Jeong, Dong-su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.649-652
    • /
    • 2015
  • Previous marking policy for the AF service of TCP traffic in the Diffserv network have no sufficient consideration on the effect of RTT and target rate. In this paper, in order to improve fairness Index by the effect RTT difference of TCP traffic, we propose the modified TSW3CDM(Time Sliding Window Three Color Dynamic Marker) based on average transfer rate estimation and the flow state. The proposed algorithm is dynamic marking policy that do allocate band width in proportion to transmission rate. To evaluate the performance of the proposed algorithm, We accomplished a computer simulation using NS-2. From simulation results, the proposed TSW3CDM algorithm improves fairness index by comparison with TSW3CM.

  • PDF

Improvement of fairness between assured service TCP users in a differentiated service network (차별화 서비스 망에서 보장형 서비스의 TCP 사용자들간 공정성 개선 방안)

  • Lee, Ji-Hyoung;Jeong, Choong-Kyo
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.139-146
    • /
    • 2000
  • To support Quality of Service (QoS) in the existing Internet, Differentiated Service (Diff-Serv) has been proposed. But, the unfairness between TCP connections remains as a serious problem not only in the conventional best-effort service Internet but also in new Diff-Serv network. In this paper, we propose the Balancing Marker Algorithm (BMA) improving the fairness between individual connections of aggregated sources in a Diff-Serv network. This algorithm is based on the 3-level priority marking method. We compared the 2-level packet priority marker with the Balancing Marker proposed in this paper. And we showed that the BMA improved the fairness and the throughputs between the individual connections with different delays in an aggregated source.

  • PDF

A novel Adaptive Re-Marking Strategy for TCP Fairness of DiffServ Assured Services (DiffServ Assured Service에서 TCP 공평성 보장을 위한 적응적인 패킷 Re-Marking 방안)

  • Hur, Kyeong
    • The Journal of Korean Association of Computer Education
    • /
    • v.11 no.2
    • /
    • pp.99-106
    • /
    • 2008
  • In this paper, we have proposed a novel re-marking strategy at tbe ingressive edge router to improve TCP fairness of DiffServ Assured Services. Our re-marking strategy introduces a configuration method of the Temporary Permitted Rate (TPR). By using this new configuration method of TPR, IN packets of greedy TCP flows are re-marked to OUT packets pertinently and constantly whenever the network traffic changes. Simulation Results show that this novel re-marking strategy can regulate the packet transmission rate of each TCP flow to the contract rate without a decrease in the link utilization.

  • PDF

An Efficient Buffer Management Scheme for TCP Traffic Transmission in ATM Networks (ATM망에서 TCP 트래픽 전송을 위한 효율적 버퍼관리 기법)

  • Kim, Byun-Gon;Kim, Nam-Hee
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.8
    • /
    • pp.1099-1107
    • /
    • 2005
  • The Guaranteed Frame Rate(GFR) service has been designed to accomodate non-real-time applications, such as TCP/IP based traffic in ATM networks. The GFR service not only guarantees a minimum throughput at the frame level, but also supports a fair share of available resources. In this paper, we propose a cell scheduling scheme which can improve the fairness and the goodput through the traffic control in GFR service. For the evaluation of the proposed scheme, we compare the proposed scheme with the existing scheme in the fairness and the goodput. Simulation results show that proposed scheme can improve the fairness and goodput comparing with the existing buffer management scheme.

  • PDF