• Title/Summary/Keyword: TCP 성능

Search Result 690, Processing Time 0.129 seconds

Performance Improvement Method of TCP Protocol using Splitting Acknowledgement Packet in Integrated Wired-Wireless Network (유무선 복합망에서 Acknowledgement 패킷의 분할을 통한 프로토콜의 성능향상 기법)

  • Jin, Gyo-Hong
    • The KIPS Transactions:PartC
    • /
    • v.9C no.1
    • /
    • pp.39-44
    • /
    • 2002
  • In this paper, in order to improve the performance of TCP short traffic application services in wireless Internet environments, the Split-ACKs (SPACK) scheme is proposed. In wireless networks, unlike wired networks, packet losses will occur more often due to high bit error rates. Therefore, each packet loss over wireless lints results in congestion control procedure of TCP being invoked at the source. This causes severe end-to-end Performance degradation of TCP. In this paper, to alleviate the TCP Performance, the SPACK method, split acknowledgement Packets in the base station, is proposed. Using computer simulation, the performance of TCP using SPACK is analysed and shows better performance than traditional TCP Protocol.

Improving TCP-Vegas Performance over Mobile Ad-hoc Networks (이동 애드혹 네트워크에서의 TCP-Vegas 성능향상 기법)

  • Bae Han-Seok;Song Jeom-Ki;Kim Dong-Kyun;Park Jung-Soo;Kim Hyoung-Jun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3A
    • /
    • pp.221-231
    • /
    • 2006
  • TCP is needed as a transport protocol to provide reliable end-to-end message delivery for MANETs in order to achieve a smooth integration with the fixed Internet. Particularly, TCP has its variants, namely TCP-Reno and TCP-Vegas. However, there has been no research work on extensive performance comparison of TCP-Reno and TCP-Vegas over AODV and OLSR. This paper is the first trial to perform the research by using ns-2 simulator. Through the extensive simulations, we found that which to select among routing protocols is more important than which to select among TCP variants, because the performance difference between TCP-Reno and TCP-Vegas over uy selected routing protocol is not so much outstanding. Particularly, TCP-Vegas relies on an accurate BaseRTT estimation in order to decide the sending rate of a TCP Sender. However, it cannot be directly applied to MANET because a route change makes the Base an used over a Previous Path obsolete. Therefore, we propose a technique for improving the performance of TCP-Vegas by considering the route change, and show the performance improvement through simulation study.

Split-ACK Scheme for Performance Improvement of TCP Short Traffic in Wireless Environment (무선환경에서 짧은 TCP 트래픽의 성능향상을 위한 응답패킷 분할 전송 기법)

  • 진교홍
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.5
    • /
    • pp.923-930
    • /
    • 2001
  • In this paper, in order to improve the performance of TCP short traffic services in wireless Internet environments, the Split-ACKs(SPACK) scheme is proposed. In wireless networks, unlike wired networks, packet losses will occur more often due to high bit error rates. Therefore, each packet loss over wireless links results in congestion control procedure of TCP being invoked at the source. This causes severe end-to-end performance degradation of TCP. In this paper, to alleviate the TCP performance, the SPACK method, split acknowledgement packets in the base station, is proposed. Using computer simulation, the performance of TCP using SPACK is analyzed and shows better performance than traditional TCP protocol.

  • PDF

A New Queueing Algorithm for Improving Fairness between TCP Flows (TCP 플로우 간의 공정성 개선을 위한 새로운 큐잉 알고리즘)

  • Chae, Hyun-Seok;Choi, Myung-Ryul
    • The KIPS Transactions:PartC
    • /
    • v.11C no.2
    • /
    • pp.235-244
    • /
    • 2004
  • TCP Vegas version provides better performance and more stable services than TCP Tahoe and Reno versions, which are widely used in the current Internet. However, in the situation where TCP Vegas and Reno share the bottleneck link, the performance of TCP Vegas is much smaller than that of TCP Reno. This unfairness is due to the difference of congestion control mechanisms of each TCP use. Several studies have been executed in order to solve this unfairness problem. In this paper, we analyze the minimum window size to maintain the maximum TCP performance of link bandwidth. In addition, we propose an algorithm which maintains the TCP performance and improves fairness by selective packet drops in order to allocate proper window size of each TCP connections. To evaluate the performance of the proposed algorithm, we have measured the number of data bytes transmitted between end-to-end systems by each TCP connections. The simulation results show that the proposed algorithm maintains the maximum TCP performance and improves the fairness.

TCP Performance Improvement Scheme on Dynamic Wireless Environment over UMTS System (UMTS 시스템에서 동적 무선 환경 변화에 따른 TCP 성능 향상 기법)

  • Kim, Nam-Ki;Park, In-Yong;Yoon, Hyun-Soo
    • The KIPS Transactions:PartC
    • /
    • v.10C no.7
    • /
    • pp.943-954
    • /
    • 2003
  • The mobile telecommunication system has been growing exponentially after 1990s due to the high population in a city and the growth of mobile user. In this time, the current mobile system mainly concentrates on the voice communication. However, in the next generation, mobile users want to get very diverse services via mobile terminal such as the Internet access, web access, multimedia communication, and etc. For this reason, the next generation system, such as the UMTS (Universal Mobile Telecommunication Services) system, has to support the packet data service and it will play the major role in the system. By the way, since the Web service is based on TCP, most of the Internet traffic TCP traffic. Therefore, efficient transmission of TCP traffic will take very important role in the performance of packet data service. There are many researches about improving TCP performance over wireless network. In those schemes, the UMTS system adapts the link layer retransmission scheme. However, there are rarely studies about the exact performance of the link layer retransmission scheme in the face of dynamic changes of wireless environment over the UMTS system. The dynamic changes of wireless environment, such as wireless bandwidth, can degrade TCP performance directly. So, in this paper, we simulate and analyze the TCP performance in the UMTS system with dynamic wireless environments. Then, we propose a simple scheme for minimizing TCP performance degradation. As a result of simulation, we can find that when wireless environment is changed dynamically, the probability of TCP timeout is increased, and the TCP performance is degraded very much. In this situation, the proposed simple scheme shows good performance. It saves wireless resources and reduces the degradation of TCP performance without large overhead of the base station.

TAS: TCP-Aware Sub-layer over IEEE 802.11-based wireless LANs (IEEE 802.11 기반 무선랜에서 TCP 인진서브 계층 TAS)

  • Choi, Nak-Jung;Jung, Ha-Kyung;Ryu, Ji-Ho;Seok, Yong-Ho;Choi, Yang-Hee;Kwon, Tae-Kyoung
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.5
    • /
    • pp.355-368
    • /
    • 2006
  • This paper introduces a new split-TCP approach for improving TCP performance over IEEE 802.11-based wireless LANs. TCP over wireless LANs differently from wired networks is not aggressive, which is a fundamental reason for poor performance. Therefore, we propose TAS (TCP-Aware Sub-layer) to migigate this problem. Our scheme extends the split-connection approach that divides a connection into two different connections at a split point such as an access point (AP). Using TAS, a wireless node emulates TCP ACK packets using MAC ACK frames, instead of receiving real TCP ACK packets. We compared TAS with both normal TCP and I-TCP (Indirect TCP) by NS2 simulation. Results show that TAS achieves higher throughput, more fair resource allocation and, in power-saving mode, shorter delays.

Split-Acks Scheme for Performance Improvement of TCP Short Traffic Service in Wireless Environments (무선환경에서 TCP Short Traffic 서비스의 성능향상을 위한 응답패킷 분할 전송 기법)

  • 진교홍
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.307-312
    • /
    • 2000
  • In this paper, in order to improve the performance of TCP short traffic services in wireless Internet environments, the Split-ACKs(SPACK) scheme is proposed. In wireless networks, unlike wired networks, packet losses will occur more often due to high bit error rates. Therefore, each packet loss over wireless links results in congestion control procedure of TCP being invoked at the source. This causes severs end-to-end performance degradation of TCP. In this paper, to alleviate the TCP performance, the SPACK method split acknowledgement packets in the base station is proposed. Using computer simulation the performance of TCP using SPACK is analyzed and shows better performance than traditional TCP protocol.

  • PDF

Robust TCP algorithm against the burst error in wireless Internet (버스트 에러에 강인한 TCP 알고리즘)

  • 박종훈;배세인;유명식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6B
    • /
    • pp.548-553
    • /
    • 2004
  • Due to the recent advance in wireless communication technology, it is now more demanding to enjoy the high quality of service in the wireless Internal. TCP, which many Internet applications depend on for the end-to-end transport service, is optimized for the wired environment. Consequently, TCP suffers from severe performance degradation in the wireless environment where the bit error rate is relatively high and the burst errors frequently take place. In this paper, we propose a Robust TCP algorithm, which can effectively react against the burst error and significantly improve the TCP performance in wireless Internet. It is shown through the simulations that the Robust TCP performs well in the wireless environment, especially under the burst error condition.

Performance Improvement of the Drop Policy based on TCP Retransmission in Optical Burst Switched Networks (OBS망에서의 TCP 재전송을 고려한 Drop Policy의 성능 향상)

  • 김래영;김현숙;김효진;송주석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10c
    • /
    • pp.1-3
    • /
    • 2003
  • OBS망에서 버스트의 충돌로 인한 버스트의 drop은 TCP의 성능에 중요한 영향을 끼치나, 기존의 drop policy에서는 이를 고려하지 않으며 TCP에 대한 연구로는 버스트의 assembling이 주를 이루고 있다. 본 논문에서는 OBS망에서 TCP의 재전송 문제를 drop policy와 연계하여 그 성능을 향상시키고자 한다. 본 논문에서 제안하는 drop policy는 버스트의 재전송 횟수가 더 작은 버스트를 drop시키는 TCP 기반 DP이다. TCP 기반 DP 모델과 일반적인 DP 모델의 성능을 ns­2를 이용한 시뮬레이션을 통해 평가하며, 이 때 시간의 변화에 따른 TCP throughput과 패킷의 drop rate을 비교 분석한다.

  • PDF

A Study on TCP Classification Performance by Different Management of TCP ACK Packet (TCP ACK 패킷의 차등처리에 의한 TCP 종류별 성능에 관한 연구)

  • Lee, Eun-Sang;Chae, Hyun-Seok;Choi, Myoung-Ryul
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2000.10b
    • /
    • pp.1621-1624
    • /
    • 2000
  • 양방향 TCP 연결에서는 ack compression 에 의하여 성능이 저하된다. 이를 해소하기 위한 여러 연구가 진행되고 있으나, TCP 및 인터넷의 사용환경이 워낙 다양하여 뚜렷한 해결책은 없는 상태이다. 특히 TCP의 종류 및 링크의 속도에 따른 ack compression에 의한 성능 저하는 다룰 수밖에 없다. 본 논문에서는 ns-2(network simulator 2)라는 툴(tool)을 사용하여 망의 성능을 측정한 결과로, 우선단방향과 양방향의 TCP 연결한 망의 성능을 망의 속도별, TCP 종류별로 비교한 후 ack compression을 적절히 처리하는 방법을 제안하고 제안한 방법에 관한 성능을 또한 망의 속도별, TCP 종류별로 비교하였다.

  • PDF