TBM을 적용하는 현장에서 장비 선택, 공사기간 및 공사비용의 합리적인 산정을 위하여 TBM의 굴진성능을 정확하게 예측하는 것은 매우 중요한 사안이다. 본 연구에서는 최신 자료들을 바탕으로 기존의 TBM 굴진성능 예측모델들의 평가과정과 방법론에 대한 분석을 수행하였다. 2000년 이후에 발표된 문헌들에 대한 조사를 토대로 TBM 굴진성능 예측모델의 분류체계를 제시하였다. 본 연구에서 제시한 분류체계에서는 TBM 굴진성능 예측모델에 필요한 입력인자 선정단계와 예측기법 적용단계로 크게 구분하였다. 또한 각 예측모델에서 사용된 입력인자, 출력인자 그리고 예측모델에서 사용된 인자의 적용빈도를 분석하였다. 마지막으로 TBM 굴진성능 예측모델의 현황과 향후 연구방향에 대하여 제언하였다.
Along with the increasing demand for automatic and mechanical tunnel excavation methods in Korea, the Tunnel Boring Machine (TBM) method of tunnel excavation has become increasingly popular. However, in spite of this rising demand, few studies have been performed on the TBM method, in Korea. For this reason, this study focused on evaluation of the applicability of TBM performance prediction models based on field data in order to contribute to the basic and essential parts of TBM designation and the TBM method of tunnel excavation in Korea. These rock properties can be defined as the mechanical and physical factors of rock that have an influence on a disc cutter's ability to cut rock, and provide information for the evaluation of the applicability of field data. Based on outcomes from these tests, applicability of the prediction model was evaluated and the predicted performance of a TBM was compared with real field data obtained from four different TBM construction sites in Korea.
Kim, Kyoung-Yul;Jo, Seon-Ah;Ryu, Hee-Hwan;Cho, Gye-Chun
Geomechanics and Engineering
/
제22권6호
/
pp.489-496
/
2020
This study proposes a new empirical model to effectively predict the excavation performance of a shield tunnel boring machine (TBM). The TBM performance is affected by the geological and geotechnical characteristics as well as the machine parameters of TBM. Field penetration index (FPI) is correlated with rock mass parameters to analyze the effective geotechnical parameters influencing the TBM performance. The result shows that RMR has a more dominant impact on the TBM performance than UCS and RQD. RMR also shows a significant relationship with the specific energy, which is defined as the energy required for excavating the unit volume of rock. Therefore, the specific energy can be used as an indicator of the mechanical efficiency of TBM. Based on these relationships with RMR, this study suggests an empirical performance prediction model to predict FPI, which can be derived from the correlation between the specific energy and RMR.
Young Jin Shin;Jae Won Lee;Juhyi Yim;Han Byul Kang;Jae Hoon Jung;Jun Kyung Park
Geomechanics and Engineering
/
제38권5호
/
pp.467-476
/
2024
This study investigates Tunnel Boring Machine (TBM) performance prediction by employing discrete event simulation technique, which is a potential remedy highlighting its stochastic adaptability to the complex nature of TBM tunnelling activities. The new discrete event simulation model using AnyLogic software was developed and validated by comparing its results with actual performance data for Daegok-Sosa railway project that Earth Pressure Balance (EPB) TBM machine was used in Korea. The results showed the successful implementation of predicting TBM performance. However, it necessitates high-quality database establishment including geological formations, machine specifications, and operation settings. Additionally, this paper introduces a novel methodology for daily performance updates during construction, using automated data processing techniques. This approach enables daily updates and predictions for the ongoing projects, offering valuable insights for construction management. Overall, this study underlines the potential of discrete event simulation in predicting TBM performance, its applicability to other tunneling projects, and the importance of continual database expansion for future model enhancements.
TBM 공법은 발파 공법에 비해 굴착 중 소음과 진동 수준이 낮고, 안정성이 높은 터널 굴착 공법이며, 전세계적으로 터널 프로젝트에 TBM 공법을 적용하는 사례가 증가하는 추세이다. 디스크 커터는 TBM의 커터헤드에 장착되는 굴착 도구로 지속적으로 막장면 지반과 상호작용하며, 이때 필연적으로 마모가 발생한다. 본 연구에서는 지질 조건과 TBM 운영파라미터, 머신러닝 알고리즘들을 이용하여 디스크 커터 마모를 정량적으로 예측하였다. 디스크커터 마모 예측의 입력변수 중 UCS 데이터의 수가 다른 기계 데이터 및 마모 데이터에 비해 매우 부족하기 때문에, 먼저 TBM 기계 데이터를 이용하여 전체 구간에 대한 UCS 추정을 진행하고, 완성된 전체 데이터로 마모율 계수 예측을 수행하였다. 마모율 계수 예측 모델의 성능을 비교해 본 결과 XGBoost 모델의 성능이 가장 높게 나타났으며, 복잡한 예측 모델의 해석을 위해 SHapley Additive exPlanation (SHAP) 분석을 진행하였다.
본 논문에서는 터널 및 지하공간의 기계화 시공에 있어서 굴진성능을 예측하는 모델링 기법을 고찰하였다. 첫 번째로 세계적으로 가장 잘 알려져 있는 두 가지 모델, 즉 이론적 접근을 기본으로 하고 있는 CSM 모델과 경험적 접근을 기본으로 하고 있는 NTH 모델의 비교를 수행하였다. 두 번째로는, 특별히 Constant Cross Section 커터를 사용하는 경우의 암석 굴삭 원리를 알아보고, 이 원리를 기본으로 하는 이론적 모델을 전개하여 암석특성과 커터 제원만으로 유도되는 절삭력을 구하는 관계식을 고찰하였다. 세 번째로는 기계화 시공에 있어서 굴진성능을 예측하기 위한 일반적인 모델링 기법을 제시하였다. 마지막으로 미국 Colorado School of Mines의 Earth Mechanics Institute(EMI)에서 개발한 CSM 컴퓨터 모델을 소개하고, 이 모델을 TBM 설계에 적용한 사례를 제시하였다.
도심지 터널 공사가 많아지면서 이에 따른 소음, 진동, 교통불편 및 민원 저감을 위해 TBM 굴착이 증가하고 있다. 그러나 이러한 추세에도 불구하고 국내 TBM 공동구 설계 및 시공을 위한 기준들은 대부분 해외기술(일본, 독일 등)을 이용하고 있어 국내환경을 고려하지 못하고 있다. 특히, 공동구 TBM 설계의 주요 기준이 되는 굴진율은 대부분 일축압축강도만으로 산정되며 이마저도 실제 현장 특성과 맞지 않아 개선이 필요하다. 본 연구에서는 국내 현장에 적합한 굴진율을 예측하기 위해 수행되었다. 이를 위해 시공 중인 소단면 쉴드 TBM 굴착 현장의 지반 및 굴진데이터를 수집하고 상관관계 분석을 통해 굴진율에 영향을 미치는 주요인자를 파악하였다. 도출된 영향인자들은 통계적 분석기법을 기반으로 한 다중선형 회귀분석에 적용되어 굴진율을 예측하는 회귀식의 예측변수로 이용되었다. 결과적으로 회귀분석을 통해 도출된 회귀식은 일축압축강도와 절리간격을 예측변수로 추정되었으며, 해외 경험식과 비교하여 국내현장 굴진율의 예측 정확도가 높은 것으로 나타났다. 다만, 이 회귀식을 타 국내 현장에 적용할 경우 예측오차가 다소 증가하였다. 회귀식이 갖는 이와 같은 적용 한계를 개선하기 위해서는 추가적인 연구를 통해 현장조건에 제약을 받지 않는 굴진율 예측모델 도출이 필요할 것으로 보인다.
본 연구에서는 쉴드 TBM (Tunnel Boring Machine) 터널 디스크 커터의 적절한 교체 시기를 예측하기 위한 방법으로 머신러닝 기법을 사용한 방법을 제안하였으며, 이를 위해 국내 기 시공된 쉴드 TBM 현장의 데이터를 이용하여 다양한 머신러닝 알고리즘 중 SVM (Support Vector Machine)을 이용하여 예측 모델을 구축하고 그 성능을 평가하였다. 지반 조건별 디스크 커터의 마모와 높은 상관성을 갖는 TBM 기계 데이터와 디스크 커터 교체 이력을 분류하고, 이들을 SVM의 변수로 사용하여 3종류의 분류 함수를 적용하여 각각 학습을 한 후 예측을 수행한 결과, 각 지반 조건에 대해서 3종류의 SVM 분류 함수 중 전체적으로 RBF (Radial Basis Function) SVM의 예측성능이 가장 우수하며(평균적으로 80%의 정확도, 10% 오분류율), 지반 조건별로 구분 시 디스크 커터 교체 데이터의 수가 많을수록 예측 결과가 좋은 것으로 나타났다. 향후 많은 데이터를 축적하고 이를 모두 활용하여 학습모델을 지속적으로 발전시켜 나간다면 이와 같은 디스크 커터 교환주기를 예측하기 위한 머신러닝 기법의 실무 적용성이 매우 클 것으로 기대한다.
쉴드공법은 막장을 굴착함과 동시에 원통형 강재를 지반속에 추진시켜 터널을 축조하는 공법이다. 1818년 마크 브루넬이 런던의 템즈강 하저 굴착공사에 처음 사용한 이래 지반조건에 따른 다양한 쉴드 TBM이 개발되어 도로, 지하철, 전력구, 상하수도 등에 널리 활용되고 있다. 막장상태를 수시로 관찰하며 지반변화에 빠르게 대처할 수 있는 NATM 공법과 달리, 쉴드 공법은 굴진이 시작되면 장비 교체가 거의 불가능하다. 따라서 지반조사 및 실내시험 결과에 따라 적절한 장비를 설계하고, 막장상태에 따라 압입깊이, 커터헤드 회전속도 등을 효율적으로 관리하여 장비의 성능을 최대한 활용하여 굴착공사를 수행해야 한다. 본 연구에서는 분당선 한강하저터널의 지반조건을 NTNU, $Q_{TBM}$, 합경도, KICT-SNU 등의 모델에 적용하여 굴진성능을 예측하고, 실시공 굴진자료와 비교 분석하여 예측모델의 적용성을 검토하였으며, 한강하저터널 하행선의 굴진성능 저하원인을 분석하였다.
This research is designed to assess current achievement levels for mechanized excavation systems in Korea adn suggest the model predictive of TBM performance using statistical approaches. A test section in the TBM construction sites is selected to measure and analyze TBM performance. The field records including operating data, time allocation into downtime catagories, and machine design are analyzed on a shift basis. There are a total of 240 shifts, with most days operating two shifts per day. Examples of the probability density functions produced from the test section are presented and discussed. Relationships between TBM penetration rate and rock physical properties are investigated and the empirical equations for TBM performance prediction are also assessed with the field data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.