• Title/Summary/Keyword: TANK모형

Search Result 394, Processing Time 0.029 seconds

Models of Wastewater Treatment by Rotating Discs (회전원판접촉법(回轉圓板接觸法)에 의한 폐수처리(廢水處理)의 모형(模型)에 관한 연구(研究))

  • Chung, Tai Hak;Park, Chung Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.2
    • /
    • pp.39-46
    • /
    • 1982
  • A model of substrate removal by rotating discs has been developed for a better understanding of the process, and the performance of the system has been evaluated under steady and unsteady state. The model was constructed based upon mass transfer of the substrate from the bulk solution to the biofilm and a simultaneous removal of the substrate by the biomass. The model is composed of a few sets of differential equations representing mass balance within the elements of a liquid film and a biofilm, and in the bulk solution. Substrate removal efficiency of the process is largely dependent on a diffusion coefficient of the substrate within the biofilm and a maximum rate of substrate removal of the biomass. The efficiency is affected to a greater extent when the substrate concentration is low and the maximum substrate removal rate is high. The efficiency increases proportionally with increasing film depth when the biofilm is shallow, however, the rate of increase gradually decreases with an increase of the film depth. As the film reaches a limiting depth, the efficiency remains constant. Unlike the steady state, the effluent quality is affected by the tank volume under dynamic state. Increasing tank volume decreases peak concentration of the effluent under peak loading. Additional tank volume provides a buffer capacitya.gainst a peak loading and the holding tank behaves like an equalization tank.

  • PDF

Comparison of Measured Data and Theoretical Results for Potential Rise of Structure Using Electrolytic Tank Model (수조모델을 이용한 구조체의 전위상승에 대한 측정값과 계산값의 비교)

  • Gil, Hyoung-Jun;Kim, Dong-Woo;Choi, Chung-Seog;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.5
    • /
    • pp.72-77
    • /
    • 2006
  • This paper presents a comparison of experimental value by electrolytic tank experimental apparatus and calculated value by CDEGS program for potential rise of structure. When a test current flowed through structure models, potential rise was measured and analyzed for types of structure using the electrolytic tank experimental apparatus in real time, and was computed by means of CDEGS program. The structure models were designed and fabricated with four types on a scale of one-one hundred sixty. When the experimental data were compared with the theoretical values, the similar profile was shown. Therefore, the confidence of measurement was obtained. Potential rise was the lowest value at electric cage type(structure model B). The distributions of potential rise are dependent on the resistivity and absorption percentage in concrete attached to structure.

Seasonal Variation Estimation of Inflow Pollutant Loads of Yeong-il Bay by using Tank Model (Tank모델에 의한 영일만 유입오염부하량의 계절변동 예측)

  • Lee In-Cheol
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.3
    • /
    • pp.63-71
    • /
    • 2003
  • This study investigated about the seasonal variation of pollutant loads flowing into the Yeong-il bay from constructing Tank model which is the simulation model to evaluate the daily river discharge and pollutant load in the Hyeong-san river watershed. The estimated annual average river discharge of Hyeong-san river flowing into Yeong-il bay is about 878.34×10/sup 6/㎥/year which is about 73% of annual average of total precipitation in Hyeong-san river watershed. The annual average of pollutant load flowing into Yeong-il bay was estimated each 15.11 ton-COD/year, 23.24 ton-SS/year, 10.65 ton-TN/year, and 0.54 ton-Tp/year. For the seasonal variation of pollutant loads, it was tended as increasing of river discharge as increasing of inflow pollutant loads at June and July of summer and October of autumn. The main source of pollutant loads was found to be the Pohang city and Pohang industrial complex which are located near the mouth of Hyeong-san river. Therefore, for effective water quality management of Yeong-il bay, the counterplan to reduce pollutant loads from the main source of pollutant loads is required.

  • PDF

Structural Safety Assessment of Independent Spherical LNG Tank(3rd report) - Safety assessment of tank system against crygenic temperature - (독립구형 LNG 탱크의 구조안전성 평가(제3보) - 탱크시스템의 저온 안전성 검토 -)

  • Yong-Yun Nam;In-Sik Nho;Ho-Sup Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.4
    • /
    • pp.83-92
    • /
    • 1993
  • This paper describes structural safety assessment techniques against crygenic temperature to design MRV type B LNG tank system. The following items are detail with in detail. (1) Leakage estimation of LNG through the propagating clacks at tank plate was performed and design of the range of catch basin(2ndary barrier) was followed to ensure the safety of ship structures against leaked LNG. (2) Temperature distribution analysis for cargo hold and skirt system was carried out using the steady state heat transfer analysis model for spherical LNG tank system. (3) Thermal stress distribution of skirt and tank system was calculated, where very stiff thermal variation was shwn through item(2) analysis.

  • PDF

Experimental Study on Sloshing in Rectangular Tank with Vertical Porous Baffle (투과성 내부재가 설치된 사각형 탱크내의 슬로싱 현상에 대한 실험적 연구)

  • Hyeon, Jong-Wu;Cho, IL-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.291-299
    • /
    • 2015
  • A variety of inner baffles are often installed to reduce liquid sloshing and prevent tank damage. In particular, a porous baffle has a distinct advantage in reducing sloshing by changing the natural periods and dissipating the wave energy in a tank. In model tests, porous baffles with five different porosities were installed vertically in a liquid tank under sway motion. The free surface elevations and pressures were measured using an image processing technique and a pressure gage for various combinations of baffle's porosity and submergence depth, and tank's amplitude and period. The experimental results were in good agreement with the analytic solutions (Cho, 2015), with the exception of a quantitative difference at resonant periods. The experimental results showed that the sloshing characteristics in a tank were closely dependent on both the porosity and submergence depth of the baffle, and the optimal porosity existed near P = 0.1275.

Comparison of Estimating Parameters by Univariate Search and Genetic Algorithm using Tank Model (단일변이 탐색법과 유전 알고리즘에 의한 탱크모형 매개변수 결정 비교 연구)

  • Lee, Sung-Yong;Kim, Tae-Gon;Lee, Je-Myung;Lee, Eun-Jung;Kang, Moon-Seong;Park, Seung-Woo;Lee, Jeong-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.3
    • /
    • pp.1-8
    • /
    • 2009
  • The objectives of this study are to apply univariate search and genetic algorithm to tank model, and compare the two optimization methods. Hydrologic data of Baran watershed during 1996 and 1997 were used for correction the tank model, and the data of 1999 to 2000 were used for validation. RMSE and R2 were used for the tank model's optimization. Genetic algorithm showed better result than univariate search. Genetic algorithm converges to general optima, and more population of potential solution made better result. Univariate search was easy to apply and simple but had a problem of convergence to local optima, and the problem was not solved although search the solution more minutely. Therefore, this study recommend genetic algorithm to optimize tank model rather than univariate search.

A Tank Model Application to Soyanggang Dam and Chungju Dam with Snow Accumulation and Snow Melt (적설 및 융설 모의를 포함한 탱크모형의 소양강댐 및 충주댐에 대한 적용)

  • Lee, Sang-Ho;An, Tae-Jin;Yun, Byung-Man;Shim, Myung-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.5
    • /
    • pp.851-861
    • /
    • 2003
  • Snow accumulation and snow melt was simulated and included in the computation of the watershed runoff for Soyanggang Dam and Chungju Dam. A modified Tank Model was used for the simulation, which has three serial tanks and a pulse response function. The model parameters were estimated through the global optimization method of Shuffled Complex Evolution-University of Arizona (SCE-UA). A watershed was divided into four zones of elevation. The temperature decrease of the zones was a rate of -0.6$^{\circ}C$/100m. Almost all precipitation from December to February become accumulated as snow, and then the snow melts and runs off from March to April. The average runoff with snow melt was greater than the average runoff without snow melt during the period from March to April. The improved amount from snow melt simulation was about one fifth of the observed one for Soyanggang Dam. The increased amount for Chungju Dam was about one fourth of the observed average runoff during the same period. Although the watershed runoff was simulated including snow melt, it was less than the observed one for both of the dams.

Low Flow Frequency Analysis of Steamflows Simulated from the Stochastically Generated Daily Rainfal Series (일 강우량의 모의 발생을 통한 갈수유량 계열의 산정 및 빈도분석)

  • Kim, Byeong-Sik;Gang, Gyeong-Seok;Seo, Byeong-Ha
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.3
    • /
    • pp.265-279
    • /
    • 1999
  • In this study, one of the techniques on the extension of low flow series has been developed, in which the daily streamflows were simulated by the Tank model with the input of extended daily rainfall series which were stochastically generated by the Markov chain model. The annual lowest flow serried for each of the given durations were formulated form the simulated daily streamflow sequences. The frequency of the estimated annual lowest flow series was analyzed. The distribution types to be used for the frequency analysis were two-parameter and three-parameter log-normal distribution, two-parameter and three-parameter Gamma distribution, three-parameter log-Gamma distribution, Gumbel distribution, and Weibull distribution, of which parameters were estimated by the moment method and the maximum likelihood method. The goodness-of-fit test for probability distribution is evaluated by the Kolmogorov-Sminrov test. The fitted distribution function for each duration series is applied to frequency analysis for developing duration-low flow-frequency curves at Yongdam Dam station. It was shown that the purposed technique in this study is available to generate the daily streamflow series with fair accuracy and useful to determine the probabilistic low flow in the watersheds having the poor historic records of low flow series.

  • PDF

A Study on the Numerical Modeling of the Fish Behavior to the Model Net - Swimming Characteristics of Rainbow Trout, Salmo Gairdnerii in the Water Tank Without Model Net - (모형 그물에 대한 어군행동의 수직 모델링에 관한 연구 - 모형 그물이 없는 수조에서의 무지개송어의 유영특성 -)

  • 이병기
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.1
    • /
    • pp.74-83
    • /
    • 1995
  • To estimate the parameters of a mathematical model of fishes' swimming behavior, the behavior in a experimental water tank was observed and analyzed using the video monitoring system. The tank was equipped with vertical circulation system, and measured $3,500L\;{\times}\;1,500B\;{\times}\;1,000H\;mm$ at flow channel and $1,200L\;{\times}\;900B\;{\times}\;500H\;mm$ at observational part. Rainbow trout, salmo gairdnerii were used as experimental fishes. Their swimming behavior in the tank was observed by the monitoring system, and the positions of every individual were checked at 0.5 second intervals by the image processing of recorded pictures for 5 minutes. The mean swimming speed calculated from the time series data of positions of every individual ranged from 2.5BL cm/sec to 2.9BL cm/sec at the stagnated flow. The mean swimming speed of 10 individuals in a school increased according to the flow speed. The mean swimming depth ranged from 17 cm to 38 cm even though it changed irregularly at the stagnated flow and gradually became stable according to the increase of flow speed. In the present study, the mean distance of individuals from wall of the tank varied from 17.6cm to 21.4cm. The mean distance between the nearest individual varied from 0.4BL cm to 0.7BL cm when 10 individuals in a school were observed. The mean dimension of fish schools became enlarged in all directions according to increase in the number of individuals, and as flow speed increased the horizontal dimension of fish schools expanded while their vertical dimension decreased.

  • PDF