• Title/Summary/Keyword: T98G cell

Search Result 60, Processing Time 0.025 seconds

Translation Initiation Factor IF1-Dependent Stimulation of 30 S Preinitiation Complex Formation: Rapid Isolation and fMEt-tRNA Binging Activity of IF1

  • CHOIK, SANG-YUN;HYUN-JUNG KIM;JUNG-IK YANG;HYO-IL CHANG
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.986-993
    • /
    • 2001
  • Translation Initiation in prokaryotes involves the formation of a 30 S preinitiation complex, in which translation initiation factors play a role in the stimulation of fMet-tRNA (fMet) binding. However, the specific function and precise mechanism of initiation factor IF1 are still unclear. One a functionally active factor with a high purity. In the present study a large quantity of active IF was rapidly purified, obtained by the overexpression of the infA gene, and then used for a functional study. The induction of infA did not appreciably affect the growth rate of the protease-deficient strain E. coli AR68 harboring the IF1 overproducing plasmid. The level of IF1 obtained was approximately $1-2\%$ of the total cell protein, which enabled the yield of highly purified IF1 (>$98\%$ pure) to be increased to 0.15 mg of IF1/g of cells. The IF1 was isolated within one day by the centrifugatioin of the ribosomal washed fraction, by ammonium sulfate fractionation, chromatography on batch of phosphocellulose, and FPLC Mono S. The overexpressed IF1 was found to be comparable to the factor isolated from normal cells, as determined by migration in NEPHGE/SDS 2-D gels. For binding of fMet-tRNA(fMet) to the 30 S ribosomal subunitis, relatively high levels of binding were obtained when IF2 was present. The addition of IF1 up to 110 pmol proportionally stimulated the binding to a variable extent. This IF1-dependent stimulation of the 30 S preinitiation complex formation demonstrated that IF1 would appear to be exclusively essential for promoting the initiation phase of protein synthesis.

  • PDF

Paenibacillus kimchicus sp. nov., an antimicrobial bacterium isolated from Kimchi (김치로부터 분리된 항균 활성 세균 Paenibacillus kimchicus sp. nov.)

  • Park, A-rum;Oh, Ji-Sung;Roh, Dong-Hyun
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.319-326
    • /
    • 2016
  • An antimicrobial bacterium to pathogenic microorganisms, strain $W5-1^T$ was isolated from Korean fermented-food Kimchi. The isolate was Gram-staining-variable, strictly aerobic, rod-shaped, endospore-forming, and motile with peritrichous flagella. It grew at $15-40^{\circ}C$, at pH 6.0-10.0, and in the presence of 0-4% NaCl. Strain $W5-1^T$ could hydrolyze esculin and xylan, and assimilate $\small{D}$-mannose, but not $\small{D}$-mannitol. Strain $W5-1^T$ showed antimicrobial activity against Listeria monocytogens, Pseudomonas aeruginosa, Staphylococcus aureus, and Salmonella typhi. The G+C content of the DNA of strains $W5-1^T$ was 52.6 mol%. The predominant respiratory quinone was menaquinone-7 (MK-7) and the major cellular fatty acids were $C_{16:0}$, antieiso-$C_{15:0}$, $C_{18:0}$, and $C_{12:0}$. The strain contained meso-diaminopimelic acid in cell-wall peptidoglycan. On the basis of 16S rRNA gene sequence and phylogenetic analysis, the strain W5-1 was shown to belong to the family Paenibacillaceae and was most closely related to Paenibacillus pinihumi $S23^T$ (98.4% similarity) and Paenibacillus tarimensis $SA-7-6^T$ (96.4%). The DNA-DNA relatedness between the isolate and Paenibacillus pinihumi $S23^T$ was 8.5%, indicating that strain $W5-1^T$ represented a species in the genus Paenibacillus. On the basis of the evidence from this polyphasic study, it is proposed that strain $W5-1^T$ is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus kimchicus sp. nov. is proposed. The type strain is $W5-1^T$ (=KACC $15046^T$ = $LMG 25970^T$).

Interaction of HIV-1 Core p24 Antigen with Human Monocytic Cell Line THP1 Results in TNF-${\alpha}$ Dependent Secretion of Matrix Metalloproteinase-9

  • Sung, Ji-Hye;Yoo, Seung-Hee;Park, Hae-Kyung;Chong, Young-Hae
    • The Journal of the Korean Society for Microbiology
    • /
    • v.35 no.1
    • /
    • pp.9-18
    • /
    • 2000
  • Immunological mechanisms involving the release of inflammatory factors by HIV-1 infected microglia in the brain have been implicated in the pathogenesis of HIV dementia (HIVD). Since the regulation of matrix metalloproteinases (MMPs) activity can be influenced by variety of inflammatory mediators, this study was undertaken to look for a correlation between the MMP-9 release and the production of TNF-${\alpha}$ in response to HIV-1 p24 in the human monocyte cell line THP-1 as a model for microglia. First, it was shown that HIV-l core p24 antigen induced THP-1 to secrete MMP-9 in a dose response manner while it elicited a little effect on MMP-2 release in human astroglial cell line T98G. Next, it was found that p24 induced THP-1 to secrete TNF-${\alpha}$ without prior differentiation into macrophages by phorbol myristate acetate (PMA) treatment. Furthermore, anti-TNF-${\alpha}$ neutralizing antibodies significantly blocked p24-induced MMP-9 release in a dose dependent manner. Our data indicate that p24 antigen induces monocytic MMP-9 release by triggering up-regulation of TNF-${\alpha}$ secretion.

  • PDF

Comparative Genomic Analysis of Pathogenic Factors of Pectobacterium Species Isolated in South Korea Using Whole-Genome Sequencing

  • Jee, Samnyu;Kang, In-Jeong;Bak, Gyeryeong;Kang, Sera;Lee, Jeongtae;Heu, Sunggi;Hwang, Ingyu
    • The Plant Pathology Journal
    • /
    • v.38 no.1
    • /
    • pp.12-24
    • /
    • 2022
  • In this study, we conducted whole-genome sequencing with six species of Pectobacterium composed of seven strains, JR1.1, BP201601.1, JK2.1, HNP201719, MYP201603, PZ1, and HC, for the analysis of pathogenic factors associated with the genome of Pectobacterium. The genome sizes ranged from 4,724,337 bp to 5,208,618 bp, with the GC content ranging from 50.4% to 52.3%. The average nucleotide identity was 98% among the two Pectobacterium species and ranged from 88% to 96% among the remaining six species. A similar distribution was observed in the carbohydrate-active enzymes (CAZymes) class and extracellular plant cell wall degrading enzymes (PCWDEs). HC showed the highest number of enzymes in CAZymes and the lowest number in the extracellular PCWDEs. Six strains showed four subsets, and HC demonstrated three subsets, except hasDEF, in type I secretion system, while the type II secretion system of the seven strains was conserved. Components of human pathogens, such as Salmonella pathogenicity island 1 type type III secretion system (T3SS) and effectors, were identified in PZ1; T3SSa was not identified in HC. Two putative effectors, including hrpK, were identified in seven strains along with dspEF. We also identified 13 structural genes, six regulator genes, and five accessory genes in the type VI secretion system (T6SS) gene cluster of six Pectobacterium species, along with the loss of T6SS in PZ1. HC had two subsets, and JK2.1 had three subsets of T6SS. With the GxSxG motif, the phospholipase A gene did locate among tssID and duf4123 genes in the T6SSa cluster of all strains. Important domains were identified in the vgrG/paar islands, including duf4123, duf2235, vrr-nuc, and duf3396.

Anti-Inflammatory and Anti-Oxidative Activity of Methanol Extract from Terminalia chebula Retz., Lavandula spica L., and Dalbergia odorifera T. in RAW 264.7 Cells (가자, 라벤더, 강향의 항염증 및 항산화 활성 검색)

  • Chae, In-Gyeong;Yu, Mi-Hee;Kim, Hyuk-Il;Lee, In-Seon
    • Journal of Life Science
    • /
    • v.21 no.4
    • /
    • pp.561-567
    • /
    • 2011
  • This study was performed to evaluate the anti-inflammatory and antioxidant activities of methanol extract from natural products. Cell viability was determined by MTT assay. The production of NO and TNF-${\alpha}$ were measured by Griess assay and enzyme-linked immunosorbent assay (ELISA). In order to effectively screen for anti-inflammatory agents, we first examined the inhibitory effects of 24 natural products on the production of lipopolysaccharide (LPS)-induced nitric oxide (NO) in RAW 264.7 cells. Three extracts of Terminalia chebula Retz., Lavandula spica L., and Dalbergia odorifera T. significantly inhibited NO production. The three extracts significantly decreased production of NO in a dose-dependent manner. Terminalia chebula Retz. decreased TNF-${\alpha}$ production. Antioxidative effects of the three extracts were measured based on polyphenol and flavonoid contents and DPPH radical scavenging activity assay. The three extracts showed high polyphenol contents as well as strong DPPH scavenging activities. In particular, Terminalia chebula Retz. contained the highest polyphenol and flavonoid levels of 616 and $96\;{\mu}g/mg$, respectively, compared to Lavandula spica L. and Dalbergia odorifera T. As DPPH radical scavensing activities, RC50 values of Terminalia chebula Retz. were $2.09\;{\mu}g/ml$.

Apoptotic Effects of Cordycepin Through the Extrinsic Pathway and p38 MAPK Activation in Human Glioblastoma U87MG Cells

  • Baik, Ji-Sue;Mun, Seo-Won;Kim, Kyoung-Sook;Park, Shin-Ji;Yoon, Hyun-Kyoung;Kim, Dong-Hyun;Park, Min-Kyu;Kim, Cheorl-Ho;Lee, Young-Choon
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.309-314
    • /
    • 2016
  • We first demonstrated that cordycepin inhibited cell growth and triggered apoptosis in U87MG cells with wild-type p53, but not in T98G cells with mutant-type p53. Western blot data revealed that the levels of procaspase-8, -3, and Bcl-2 were downregulated in cordycepin-treated U87MG cells, whereas the levels of Fas, FasL, Bak, cleaved caspase-3, -8, and cleaved PARP were upregulated, indicating that cordycepin induces apoptosis by activating the death receptor-mediated pathway in U87MG cells. Cordycepin-induced apoptosis could be suppressed by only SB203580, a p38 MAPK-specific inhibitor. These results suggest that cordycepin triggered apoptosis in U87MG cells through p38 MAPK activation and inhibition of the Akt survival pathway.

In Vitro Studies on Phytochemical Content, Antioxidant, Anticancer, Immunomodulatory, and Antigenotoxic Activities of Lemon, Grapefruit, and Mandarin Citrus Peels

  • Diab, Kawthar AE
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3559-3567
    • /
    • 2016
  • Background: In recent years, there has been considerable research on recycling of agro-industrial waste for production of bioactive compounds. The food processing industry produces large amounts of citrus peels that may be an inexpensive source of useful agents. Objective: The present work aimed to explore the phytochemical content, antioxidant, anticancer, antiproliferation, and antigenotxic activities of lemon, grapefruit, and mandarin peels. Materials and Methods: Peels were extracted using 98% ethanol and the three crude extracts were assessed for their total polyphenol content (TPC), total flavonoid content (TFC), and antioxidant activity using DPPH (1, 1-diphenyl-2-picrylhydrazyl). Their cytotoxic and mitogenic proliferation activities were also studied in human leukemia HL-60 cells and mouse splenocytes by CCK-8 assay. In addition, genotoxic/antigenotoxic activity was explored in mouse splenocytes using chromosomal aberrations (CAs) assay. Results: Lemon peels had the highest of TPC followed by grapefruit and mandarin. In contrast, mandarin peels contained the highest of TFC followed by lemon and grapefruit peels. Among the extracts, lemon peel possessed the strongest antioxidant activity as indicated by the highest DPPH radical scavenging, the lowest effective concentration 50% ($EC_{50}=42.97{\mu}g\;extract/mL$), and the highest Trolox equivalent antioxidant capacity (TEAC=0.157). Mandarin peel exhibited moderate cytotoxic activity ($IC_{50}=77.8{\mu}g/mL$) against HL-60 cells, whereas grapefruit and lemon peels were ineffective anti-leukemia. Further, citrus peels possessed immunostimulation activity via augmentation of proliferation of mouse splenocytes (T-lymphocytes). Citrus extracts exerted non-cytotoxic, and antigenotoxic activities through remarkable reduction of CAs induced by cisplatin in mouse splenocytes for 24 h. Conclusions: The phytochemical constituents of the citrus peels may exert biological activities including anticancer, immunostimulation and antigenotoxic potential.

Genetic and Expression Analysis of the SIRT1 Gene in Gastric Cancers

  • Zhang, Cao;Song, Jae-Hwi;Kang, Young-Whi;Yoon, Jung-Hwan;Nam, Suk-Woo;Lee, Jung-Young;Park, Won-Sang
    • Journal of Gastric Cancer
    • /
    • v.10 no.3
    • /
    • pp.91-98
    • /
    • 2010
  • Purpose: Silent mating-type information regulation 2 homologue 1 (SIRT1) is a nicotinamide adenine dinucleotide-dependent deacetylase. SIRT1 plays an important role in the regulation of cell death/survival and stress response in mammals. The aim of this study was to investigate whether the SIRT1 gene is involved in the development or progression of gastric cancers. Materials and Methods: SIRT1 and p53 genes in 86 gastric cancers were examined for genetic alterations by PCR-single strand conformation polymorphism sequencing, as well as SIRT1 protein expression in 170 gastric cancers by immunohistochemistry. Results: In the genetic analysis, we found SIRT1 and p53 mutations in two and 12 cases, respectively. Two missense mutations, c.599 C>T (T200I) and c.1258 G>A (E420K), were detected in the SIRT1 gene coding region. The SIRT1 and p53 mutation were found in mutually exclusive gastric cancers. The immunohistochemistry revealed that SIRT1 overexpression was found in 95 (55.9%) of 170 gastric cancers. Altered SIRT1 expression was not statistically associated with clinicopathological parameters, including tumor differentiation, location, lymph node metastasis, or p53 expression. Two cases with an SIRT1 mutation showed increased SIRT1 expression. Conclusions: These results suggest that genetic alterations and overexpression of the SIRT1 gene may contribute to gastric cancer development.

Genotoxicity and Mutagenicity of the Extracts of Morus alba L. (뽕나무 추출물의 유전독성 및 돌연변이원성)

  • Jin, Hyou-Ju;Lee, Hyeon-Yong;Kim, Jong-Dai;Heo, Moon-Young;Lee, Jin-Ha
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.6
    • /
    • pp.217-225
    • /
    • 2005
  • This study was carried out to investigate the genotoxicity in comet and in vitro micronucleus assay and mutagenicity in Ames test of the extracts from leaves and stem of Morus alba L. The samples showed a very weak cytotoxicity on the NIH/3T3 cells by SRB assay. The cell viability of the extracts and fractions from leaves and stems of Morus alba L. was 80% over at $500\;{\mu}g/ml$, and that of the chloroform fractions from leaves and stems showed lower than others. The genotoxicity at $250\;{\mu}g/ml$ of 100% EtOH and water extracts on the NIH/3T3 cells in comet assay was about 40% compared to positive control, and most fractions from 100% EtOH extract of the leaves showed stronger genotoxicity than that offractions from the stem. The genotoxicity with S-9 mix in vitro micronucleus assay of the 100% EtOH and water extracts form Morus alba L. did not indicate any significant difference as compared with control group. The cytokinesis-binucleated cells were showed in the hexan, chloroform, ethylacetate and butanol fractions from the extract of the leaves without S-9, and sample with S-9 showed CB cells in the chloroform fraction from the leaves. In the Ames test, the water and 100% ethanol extracts of Morus alba L. did not have a strong mutagenicity in TA98 and TA100, but the fractions of organic solvents of the ethanol extract had $10{\sim}26%$ of mutagenicity on the TA100 strain.

Effect of Fermented Ice Plant (Mesembryanthemum crystallinum L.) Extracts against Antioxidant, Antidiabetic and Liver Protection (아이스플랜트(Mesembryanthemum crystallinum L.) 발효추출물의 항산화, 항당뇨 및 간 보호효과)

  • Nam, Sanghae;Kang, Seungmi;Kim, Seonjeong;Ko, Keunhee
    • Journal of Life Science
    • /
    • v.27 no.8
    • /
    • pp.909-918
    • /
    • 2017
  • Ice plant (Mesembryanthemum crystallinum L.) was fermented in brine in the form of mulkimchi (IPMB), and its contents of organic acid and cyclitols and biological activities were compared with those before fermentation. The pH of the IPMB continuously decreased until the sixth day of fermentation. The lactic acid yield was greatest on the fourth day. D-pinitol in ice plant mulkimchi solids (IPMS) decreased during fermentation. However, myo-inositol and D-chiro-inositol increased. The radical scavenging activities of ABTS and DPPH, in addition to the activity of FRAP, of the IPMS extract were generally higher after fermentation, with the activities highest on the fifth ($79.09{\pm}0.69%$), fourth ($87.55{\pm}1.21%$), and sixth ($78.72{\pm}0.99%$) days of fermentation, respectively, when treated with 1 mg/ml of the extract. As shown by a lipid/MA assay, antioxidant activity was generally higher after fermentation. The viability of BNL CL.2 cells damaged by t-BHP, $H_2O_2$, and ethanol was $14.19{\pm}0.98$, $13.80{\pm}2.25$, and $25.89{\pm}2.90%$, respectively. When treated with $200{\mu}g/ml$ of IPMS extract, the cell viability was $57.06{\pm}4.52%$ on the first day, and $66.06{\pm}1.36%$ on the fourth day, and $50.07{\pm}04.85%$ on the sixth day of fermentation. Hepatocyte protective effects did not increase significantly after fermentation. ${\alpha}-glucosidase$ inhibitory activity was quite high, with a range of $83.52{\pm}2.69$ to $92.79{\pm}2.16%$, and the activity increased gradually in all the groups over the fermentation period. There was no clear correlation between ${\alpha}-amylase$ inhibitory activity and fermentation.